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Complex differentiability

At the very heart of the study of Real analysis, lies the notion of differentiability and

integration and these two notions are tied together by the very beautiful fundamental

theorem of calculus. In Complex analysis also, the things are quite similar. At the very

heart of the study of Complex analysis, the notion of complex differentiability and com-

plex line integrals lie and they are also tied together by a variant of the fundamental

theorem of calculus.

There is a further variant of this fundamental theorem called the Cauchy’s theo-

rem, which wends certain amount of rigidity to complex differentiable functions thereby

making the theory very beautiful. In this lecture we will define complex differentiability

and explore some of its properties.
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Recall that a function f : U ⊆ R−→ R is said to be differetiable at a point x0 ∈U if x0

is an interior point of U and lim
x→x0

x∈U \{x0}

f (x)− f (x0)
x−x0

exists. The limit is denoted by f ′(x0) which

is called the derivative of f at x0.

Complex differentiability

Let Ω ⊆ C and f : Ω −→ C. We say that f is complex differentiable at a point z0 ∈
Ω if z0 is an interior point and lim

z→z0
z∈Ω\{z0}

f (z)− f (z0)
z−z0

exists. The limit is deoted by f ′(z0) or

d f
d z (z0). If f is complex differentiable at every point z ∈Ω, then we say that f is complex

differentiable onΩ or holomorphic onΩ.

(Refer Slide Time: 06:30)

There also many other variants for the definition of complex differentiability. An-

other important variant is ε−δ definition for complex differentiability:

We say that f is complex differentaible at z0, if ∃ f ′(z0) ∈ C such that, given ε> 0,∃δ> 0

such that D(z0,δ) ⊆Ω and
∣∣∣ f (z)− f (z0

z−z0
− f ′(z0)

∣∣∣< ε whenever 0 < |z − z0 < δ.
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Another definition is in terms of linear approximation,

We say that f is complex differentiable at z0 if ∃ f ′(z0) ∈C such that

f (z) = f (z0)+ f ′(z0)(z − z0)+o(z − z0), where o(z − z0) = (z − z0)e(z),e(z) → 0 as z → z0.

LEMMA 1. LetΩ⊆C. If f :Ω−→C is complex differentiable at z0, then f is continuous

at z0.

The proof the lemma is immediate from the definition of complex differentiability.

EXERCISE 2. Let f (z) = zn be defined on C. Fix z0 ∈C. Then for z 6= z0,

f (z)− f (z0)

z − z0
= zn − zn

0

z − z0

= zn−1 + zn−2z0 +·· ·+ zn−1
0

lim
z→z0

f (z)− f (z0)

z − z0
= zn−1

0 + zn−1
0 · · ·+ zn−1

0 (n − terms)

= nzn−1
0
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Laws of Calculus are satisfied:

• Linearity

If f , g : Ω ⊆ C −→ C are complex differentiable at z0 ∈ Ω, then so is f + g with

complex derivative f ′(z0)+ g ′(z0). If c ∈ C, then c f is complex differentiable at

z0 and (c f )′(z0) = c f ′(z0).

• Product rule

If f , g :Ω ⊆ C −→ C be complex differentiable at z0 ∈Ω. Then ( f g ) is complex

differentiable at z0 with derivative f ′(z0)g (z0)+ f (z0)g ′(z0).

• Quotient rule

If f , g :Ω⊆C−→C be complex differentiable at z0 ∈Ω and suppose that g does

not vanish at z0. Then by the continuity, g does not vanish in a neighborhood

of D of z0. Then
f

g
is complex differentiable at z0.

(
f

g

)′
(z0) = f ′(z0)g (z0)− g ′(z0) f (z0)

(g (z0))2
.
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• Chain rule Let f : Ω −→ C be complex differentiable at z0 ∈ Ω and suppose g :

D −→ C such that g is complex differentiable at f (z0) and f (Ω) ⊆ D, then g ◦ f

is complex differentiable at z0 and (g ◦ f )′(z0) = g ′( f (z0)) f ′(z0).

(Refer Slide Time: 22:06)

PROOF. Since f is complex differentiable at z0,∃ f ′(z0) and e1(z) such that

f (z) = f (z0)+ (z − z0) f ′(z0)+ (z − z0)e1(z), where e1(z) → 0 as z → z0.
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Let w0 = f (z0). Since g is complex differentiable at w0,∃ g ′(w0) and e2(w)

such that, g (w) = g (w0)+ (w −w0)g ′(w0)+ (w −w0)e2(w), where e2(w) → 0 as

w → w0.

Since f is complex differentiable at z0, it is continuous at z0. Hence f (z) → w0

whenever z → z0.

g ( f (z)) = g ( f (z0))+ (
f (z)− f (z0)

)
g ′( f (z0))+ ( f (z)− f (z0))e2( f (z))

= (
f (z)− f (z0)

)(
g ′( f (z0))+e2( f (z))

)
= (z − z0)

(
f ′(z0)+e1(z)

)(
g ′( f (z0))+e2( f (z))

)
lim

z→z0
z∈Ω\{z0}

g ( f (z))− g ( f (z0))

z − z0
= lim

z→z0
z∈Ω\{z0}

(
f ′(z0)+e1(z)

)(
g ′( f (z0))+e2( f (z))

)
= f ′(z0)g ′( f (z0))

(Refer Slide Time: 27:06)
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EXERCISE 3. Prove the linearity, product rule and quotient rule for complex deriva-

tive.
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Functions which are complex differentiable on C are called entire functions. For

example, z → zn is an entire function.

By using the laws of Calculus,we have, p(z) = a0 +a1z +·· ·+ad zd is an entire function.

Moreover, we know that, for z0 ∈C, p ′(z0) = a1 +2a2z0 +·· ·+d ad zd−1
0 .

(Refer Slide Time: 30:51)

Let R(z) = p(z)

q(z)
onΩ such that q(z) 6= 0∀z ∈Ω. By the quotient rule R(z) is holomor-

phic onΩ.

• Consider f (z) = z. Fix z0 ∈ C, then
f (z)− f (z0)

z − z0
= z − z0

z − z0
. Let z = z0 +h, z =

z0 +h, where h 6= 0. lim
z→z0

= f (z)− f (z0)

z − z0
= lim

h→0

h

h
. Suppose h → 0 along the real

axis, then lim
h→0

h

h
= 1. Suppose h → 0 along the imaginary axis, then lim

h→
h

h
=−1.

Hence the limit does not exists =⇒ f (z) is not holomorphic.
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• Let f (z) = |z|2 = zz. Fix z0 ∈C and z = (z0 +h).Then,

f (z0 +h) = (z0 +h)(z0 +h) = |z0|2 +|h|2 +hz0 +hz0 =⇒
f (z0 +h)− f (z0)

h
= hh +hz0 +hz0

h

= h + z0 + h

h
z0

Now on taking the limit h → 0 along real axis will obtain z0 + z0 and along the

imaginary axis will obtain z0 − z0. Since the limits are not equal, the limit does

not exists. Hence f is not holomorphic.


