Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture No - 2.3

Functions on the complex plane

In the last lecture we discussed isometrics on the complex plane; isometries were
distance preserving complex valued functions which were defined on the entire com-
plex plane. Throughout this course we will be interested in studying complex valued
functions which are defined on open connected subsets of the complex plane.
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We shall refer to open connected subsets of C by the terms, domain or region.
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Let Q < C be a domain and let f : Q — C be a complex valued function. Define

u(z):=Re(f(2)) and v(z) := Im(f(2)) for z € Q. Then f(z) = u(z) + iv(z).

EXAMPLE 1. Consider p : C — C given by p(z) = ap + a;z+--- + agz%. Since C can
be identified with R?, we have z = x + iy and thus p(z) can be identified as p(x, y),then
p(z) = p(x,y) = p1(x,y) + ip2(x,y). But notice that, every polynomial in two variable
may not be written as a polynomial in z itself. If p(x, y) = x, then p(z) = %E Here pisa

polynomial which involves both z and z.
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EXAMPLE 2 (Rational functions). Let p(z) and g(z) be polynomials with no common
factors and let Z(q) = {z € C: g(z) = 0}. Note that g(z) is a polynomial it has a degree,
say d, then the number of points where g vanishes (counting multiplicities) will be less
than or equal to d. Then Z(qg) is finite and hence closed. Define Q := C\ Z(gq). Then,
since Z(q) is finite and closed, Q is an open connected subset of C.

Define R: Q) — C given by R(z) := P ‘Then such a function is called rational func-

q(z)*
tion.
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DEFINITION 1 (Uniform convergence). Let Q < C and f, f;, :— C be a collection of
functions defined on Q. We say that the sequence {f,;},en converges to f uniformly on

Qifgivene >0,3dN e Nsuch that | f,(x) — f(x)|<eVxeQand n= N.

EXERCISE 3. Let {f,},en is a sequence of continuous functions on Q <€ C which con-

verges uniformly to a function f on Q. Then f is a continuous function on Q.

o0
DEFINITION 2 (Absolute Convergence). We say that a series ). z, converges abso-
n=1

lutely if ) |z,| converges.
n=1
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Complex exponential

We are familiar with the real exponential function exp : R — R whose Taylor series

is given by,

exp(x) = X %

exp(x) is absolutely convergent for x € R.
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Let us define the define the complex exponential exp : C — C given by

o n
exp(z):= Y %

n=0

For every z € C, exp(z) converges absolutely. Let us denote the function exp(z) by e*.
EXERCISE 4. Prove that, for every z, w € C,e**" = ¢*- e".
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Trigonometric functions We know that in the real variable cases, sine and cosine

functions have a Taylor series given by

© (] nx2n+1
sinx = Z ()—
o (2n+1)!

=0 (2n)!
x* x*

-
2! 4!
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EXERCISE 5.

(1) Find the values of

(2) Prove that e? . ¢ = ¢i©+®) and eif = =10

eiX_pmix

. ix, ,—ix .
Notice that cosx = % and sinx = 3
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Let us define the complex trigonometric functions sin : C — C and cos :

given by,

eiz+e—iz

cosz=—
2

) eiz_e—iz
sinz = -
21

EXERCISE 6. Prove that cos? z +sin®z = 1.
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Hyperbolic trigonometric functions

Define hyperbolic trigonometric functions cosh : C — C and sinh : C — C given by,

e“+e %
coshz=——
2
e —e %
sinhz =
2
Now, observe that;
. e +e?
cos(iz) = 5 = cosh(z)

—Z Z

. . e e . . . . e
sin(iz) = T = isinh(z) = sinh(z) = —isin(iz)
i

EXERCISE 7. Prove that cosh?z —sinh?z =1



