Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture-2.1

Problem Session
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PROBLEM 1. Let n > 1 and suppose ¢y > ¢} > - > ¢, > 0 be real numbers and let

p(z) = cp+c1z+---+cuz". Then prove that there does not exist a root of p whose absolute

value does not exceed 1.

SOLUTION 1. We want to show that if p(zy) = 0 for some zj € C, then |zg| > 1.
1
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Consider the polynomial (1 — z) p(z),

(1-2)p2) =(co+ 12+ +nz") = (coz+ -+ cp2™™)

=co+(c1—Co)z+-+(Cp—Cp_1)2" — cpz"™!

=co—((co—c1)z+++++ (cp-1 =€) 2" + cpz"™).

Then note that all the coefficients of the terms inside the parentheses are positive num-

bers.
Let zy € C such that p(zp) = 0. Then we want to prove that |zy| > 1. We may consider

the case when z; is in the unit disc, |zg| <1
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co=lcol =1(co—c1)zo+--++ (cn_1—Cn)zy + cnzy |

= |ZO| (|(CO - Cl) +ee-t (Cn—l - Cn)zg_l + annl)
<lzol (I(co— e+ +1(cn-1— ez 1 +1cn2"1)
=120l ((co— 1) + -+ + (cn-1 — )|z | + cul2")
<(cp—c1)+(cz—c1)+--+(ch-1—Cn) +Cn

Since we started with ¢y and ended with ¢y, all the inequalities in the above equations

will be equalities.
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Therefore, we have

|20l (I(co = €1) ++++ + (cne1 — ) 2 + cn2) = lzol (I(co — c)l + -+ +(cno1 — ) 2l +1cn2")
If zp =0, then p(zp) =0 = ¢ =0, which is a contradiction. Hence zyp # 0 —

-1 -1
(Itco—c1)) + -+ (cn-1— )2y~ +cnz"l) = (I(co— eI+ +|(cn-1—cn) 2y | +Icnz")
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Reader should verify using Cauchy-Schwarz inequality that if |a + b| = |a| + | b|, then

a=Abfor LeR.
Then, by an induction argument that reader should verify,
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for AeR, (co—c1) =Aco —€1)zp = 20 = Afgz__ccll)

-+ cnz(’f = c¢g # 0. Hence z; cannot be root.

Note that if zg > 0, then p(zg) = co+ c129 + -

IfZ0<0,Z0:—a,6l>0.

If nisodd, p(zp) = (co—c1a)+ a’(co—c3a)+---+a"(c,—1 — cpa), then each term inside

the parentheses of the sum on RHS is positive. Hence in this case also p(zp) > 0.

If nis even, p(zy) = (co—c1a) +a*(c;—cza) +---+a" " %(cy_»—cy_1a) + a’*cy, then here

also each term inside the parentheses of the sum on RHS is positive = p(zp) # 0.

Hence we have proved that if |[zg| <1 = p(zg) # 0.

PROBLEM 2. Let z,w € C such that (1 +|z/*>)w = (1 + |w|®)z. Then either z = w or
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SOLUTION 2. We know that |z|? = zZ. Then,

A+1zPYw=QAQ+|wPz
W+zzw=z+wwz

w(l-wz)=z(1-zw).

Ifz=0 = w =0, hence z=w.

Suppose z # 0 and zw # 1, then

N-zw| _ — 2y _ 2
= =1 = lwl=lzl = 1 +|wl) =(1+|z]%).

1-zw
1-wz

w _ (1-zw) w_
= (wg — 2=

Hence (1+|w®)z=0+zPhw = z=w.
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DEFINITION 3. A path y from z to w is a polygonal if 3 z = zy, z1,...2p-1,2n, = w e C

suchthaty =7y 2 Yz, * Yzn1,2, Where yz. o (8) = (1 —8)z; + $zj41.
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That is polygonal path between two points in the complex plane is obtained by con-
catenating straight line paths between finite number of points.
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PROBLEM 3. Let Q < C be a connected open set. Then prove that given z, w € Q,3 a

polygonal path from z to w consisting of straight lines parallel to the real or imaginary

axis.
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SOLUTION 4. Suppose zp € Cand r > 0. Then we shall first prove that D(z, r) satisfies

the given condition.

If 2y = ap + ibp and z = a+ ib be two points inside D(zo, r). Let 2" = a+ibg € D(z0,T).

(Reader is strongly suggested to draw a picture with given details to get a good idea.)

Yz, (8)=(1=5) z) + sz (paralell to real axis)

Yo 2(8) = (1 —$)2" + sz(paralell to imaginary axis)

Define y = Va2 Yo then y will be a polygonal path from z; to z with desired

condition.
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Hence the disc D(zy, r) satisfies the condition of the problem.

Now, fix zp € Q, define A = {z € Q: z can be joined to zy by a polygonal path parallel

to axes}. Now it is left to reader to verify that A is both open and closed. Since zp€ A =

A#Z T = A=, as Qisconnected.
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DEFINITION 5. Let X, Y be metric spaces. A function f : X — Y is said to be a closed

map if f(C) is closed in Y whenever C is closed in X.

PROBLEM 4. Let f: X — Y be a continuous mapping from a compact metric space

to another metric space. Then f is a closed map.
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SOLUTION 6. Let E c X be a closed subset of X. Since X is compact, E is compact.

Claim: f(E) is compact.
Let % = {Uy}aeca be an open cover of f(E). Define 7 := {f 1 (Uy)}qea, then 7 is an

open cover of E.
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Now it is left as an exercise to reader to conclude that f(E) is also compact. Then

f(E)is compactin Y = f(E) is closed.

THEOREM 5 (Heine-Borel). A subset K < R" is compact if and only if K is closed and

bounded in R".

PROOE (=) Let K be compact, then K is closed. Consider % = (B(0, n)) nen-

Then % is an open cover of K. Since K is compact, 3n € N such that

KcB(@0,1)u---UB(0,n)

. Hence K is bounded.

(<) Assume that K is closed and bounded.
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Claim: [a, b] is sequentially compact.
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Let {x,}nen be a sequence in [a, b]. Let A = {x,, : n € N}, then 3 a subsequence con-
verging to sup(A) by using Bolzano- Weierstrass theorem. Since [a, b] is a closed set,
supremum will belong [a, b]. Hence |[a, b] is sequentially compact.

Claim: [a, b] x [c, d] is sequentially compact.

Let {(xn, ¥n)}lnen be a sequence in [a, b] x [c, d]. Let {x,, }ren be a convergent subse-
quence of {x,},en in [a, b], whose existence is obtained by above claim. Similarly, let
{¥n,}ken be a convergent subsequence of {y,}nen in [c, d].
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Now we obtain a subsequence {(x;,, yn,)} ken Of {(Xpn, Yn)lnen. Hence [a, b] x [c,d] is

also sequentially compact.
By induction [ay, b;] x --- x [ay, b,] is also sequentially compact. We know that in

a metric space sequentially compactness coincides with compactness, hence [a;, b;] x

---x[ay, by] is compact set. Since K is a closed subset of a compact set, K is also compact.
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