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PROBLEM 1. Let n > 1 and suppose c0 > c1 > ·· · > cn > 0 be real numbers and let

p(z) = c0+c1z+·· ·+cn zn . Then prove that there does not exist a root of p whose absolute

value does not exceed 1.

SOLUTION 1. We want to show that if p(z0) = 0 for some z0 ∈C, then |z0| > 1.
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Consider the polynomial (1− z)p(z),

(1− z)p(z) = (c0 + c1z +·· ·+cn zn)− (c0z +·· ·+cn zn+1)

= c0 + (c1 − c0)z +·· ·+ (cn − cn−1)zn − cn zn+1

= c0 −
(
(c0 − c1)z +·· ·+ (cn−1 − cn)zn + cn zn+1) .

Then note that all the coefficients of the terms inside the parentheses are positive num-

bers.

Let z0 ∈C such that p(z0) = 0. Then we want to prove that |z0| > 1. We may consider

the case when z0 is in the unit disc, |z0| ≤ 1
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c0 = |co | = |(c0 − c1)z0 +·· ·+ (cn−1 − cn)zn
0 + cn zn+1

0 |

= |z0|
(|(c0 − c1)+·· ·+ (cn−1 − cn)zn−1

0 + cn zn |)
≤ |z0|

(|(c0 − c1)|+ · · ·+ |(cn−1 − cn)zn−1
0 |+ |cn zn |)

= |z0|
(
(c0 − c1)+·· ·+ (cn−1 − cn)|zn−1

0 |+ cn |zn |)
≤ (c0 − c1)+ (c2 − c1)+·· ·+ (cn−1 − cn)+ cn

= c0

Since we started with c0 and ended with c0, all the inequalities in the above equations

will be equalities.
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Therefore, we have

|z0|
(|(c0 − c1)+·· ·+ (cn−1 − cn)zn−1

0 + cn zn |)= |z0|
(|(c0 − c1)|+ · · ·+ |(cn−1 − cn)zn−1

0 |+ |cn zn |)

If z0 = 0, then p(z0) = 0 =⇒ c0 = 0, which is a contradiction. Hence z0 6= 0 =⇒

(|(c0 − c1)+·· ·+ (cn−1 − cn)zn−1
0 + cn zn |)= (|(c0 − c1)|+ · · ·+ |(cn−1 − cn)zn−1

0 |+ |cn zn |)

(Refer Slide Time: 12:53)

Reader should verify using Cauchy–Schwarz inequality that if |a +b| = |a|+ |b|, then

a =λb for λ ∈R.

Then, by an induction argument that reader should verify,
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for λ ∈R, (c0 − c1) =λ(c2 − c1)z0 =⇒ z0 = c0−c1
λ(c2−c1) ∈R.

Note that if z0 > 0, then p(z0) = c0 + c1z0 +·· ·+cn zn
0 ≥ c0 6= 0. Hence z0 cannot be root.

If z0 < 0, z0 =−a, a > 0.

If n is odd, p(z0) = (c0−c1a)+a2(c2−c3a)+·· ·+an−1(cn−1−cn a), then each term inside

the parentheses of the sum on RHS is positive. Hence in this case also p(z0) > 0.

If n is even, p(z0) = (c0−c1a)+a2(c2−c3a)+·· ·+an−2(cn−2−cn−1a)+ancn , then here

also each term inside the parentheses of the sum on RHS is positive =⇒ p(z0) 6= 0.

Hence we have proved that if |z0| ≤ 1 =⇒ p(z0) 6= 0.

PROBLEM 2. Let z, w ∈ C such that (1+ |z|2)w = (1+ |w |2)z. Then either z = w or

zw = 1.
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SOLUTION 2. We know that |z|2 = zz. Then,

(1+|z|2)w = (1+|w |2)z

w + zzw = z +w w z

w(1−w z) = z(1− zw).

If z = 0 =⇒ w = o, hence z = w .

Suppose z 6= 0 and zw 6= 1, then

w
z = (1−zw)

(1−w z) =⇒ |w
z | = |1−zw

1−w z | = |1−zw |
|1−w z| = 1 =⇒ |w | = |z| =⇒ (1+|w |2) = (1+|z|2).

Hence (1+|w |2)z = (1+|z|2)w =⇒ z = w .

(Refer Slide Time: 25:46)

DEFINITION 3. A path γ from z to w is a polygonal if ∃ z = z0, z1, . . . zn−1, zn = w ∈ C
such that γ= γz0,z1 ·γz1,z2 · · · ·γzn−1,zn where γzi ,zi+1 (s) = (1− s)zi + szi+1.
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That is polygonal path between two points in the complex plane is obtained by con-

catenating straight line paths between finite number of points.

(Refer Slide Time: 29:18)

PROBLEM 3. Let Ω⊆ C be a connected open set. Then prove that given z, w ∈Ω,∃ a

polygonal path from z to w consisting of straight lines parallel to the real or imaginary

axis.
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SOLUTION 4. Suppose z0 ∈C and r > 0. Then we shall first prove that D(z0,r ) satisfies

the given condition.

If z ′
0 = a0+i b0 and z = a+i b be two points inside D(z0,r ). Let z ′′ = a+i b0 ∈ D(z0,r ).

(Reader is strongly suggested to draw a picture with given details to get a good idea.)

γz ′0,z ′′(s) = (1− s)z ′
0 + sz ′′(paralell to real axis)

γz ′′,z(s) = (1− s)z ′′+ sz(paralell to imaginary axis)

Define γ = γz ′0,z ′′ · γz ′′,z , then γ will be a polygonal path from z ′
0 to z with desired

condition.

(Refer Slide Time: 36:10)
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Hence the disc D(z0,r ) satisfies the condition of the problem.

Now, fix z0 ∈Ω, define A = {z ∈Ω : z can be joined to z0 by a polygonal path parallel

to axes}. Now it is left to reader to verify that A is both open and closed. Since z0 ∈ A =⇒
A 6=∅ =⇒ A =Ω, asΩ is connected.

(Refer Slide Time: 38:28)
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DEFINITION 5. Let X ,Y be metric spaces. A function f : X −→ Y is said to be a closed

map if f (C ) is closed in Y whenever C is closed in X .

PROBLEM 4. Let f : X −→ Y be a continuous mapping from a compact metric space

to another metric space. Then f is a closed map.

(Refer Slide Time: 40:30)
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SOLUTION 6. Let E ⊂ X be a closed subset of X . Since X is compact, E is compact.

Claim: f (E) is compact.

Let U = {Uα}α∈A be an open cover of f (E). Define V := { f −1(Uα)}α∈A, then V is an

open cover of E .

(Refer Slide Time: 42:14)
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Now it is left as an exercise to reader to conclude that f (E) is also compact. Then

f (E) is compact in Y =⇒ f (E) is closed.

THEOREM 5 (Heine-Borel). A subset K ⊆ Rn is compact if and only if K is closed and

bounded in Rn .

PROOF. (⇒) Let K be compact, then K is closed. Consider U = (B(0,n))n∈N.

Then U is an open cover of K . Since K is compact, ∃n ∈N such that

K ⊂ B(0,1)∪·· ·∪B(0,n)

. Hence K is bounded.

(⇐) Assume that K is closed and bounded.
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K is bounded =⇒ K ⊂ [a1,b1]×·· ·× [an ,bn].

Claim: [a,b] is sequentially compact.

(Refer Slide Time: 49:14)
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Let {xn}n∈N be a sequence in [a,b]. Let A = {xn : n ∈ N}, then ∃ a subsequence con-

verging to sup(A) by using Bolzano- Weierstrass theorem. Since [a,b] is a closed set,

supremum will belong [a,b]. Hence [a,b] is sequentially compact.

Claim: [a,b]× [c,d ] is sequentially compact.

Let {(xn , yn)}n∈N be a sequence in [a,b]× [c,d ]. Let {xnk }k∈N be a convergent subse-

quence of {xn}n∈N in [a,b], whose existence is obtained by above claim. Similarly, let

{ynk }k∈N be a convergent subsequence of {yn}n∈N in [c,d ].
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Now we obtain a subsequence {(xnk , ynk )}k∈N of {(xn , yn)}n∈N. Hence [a,b]× [c,d ] is

also sequentially compact.

By induction [a1,b1]× ·· · × [an ,bn] is also sequentially compact. We know that in

a metric space sequentially compactness coincides with compactness, hence [a1,b1]×
·· ·×[an ,bn] is compact set. Since K is a closed subset of a compact set, K is also compact.
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