Complex Analysis

Prof. Pranav Haridas

Kerala School of Mathematics

Lecture No - 48

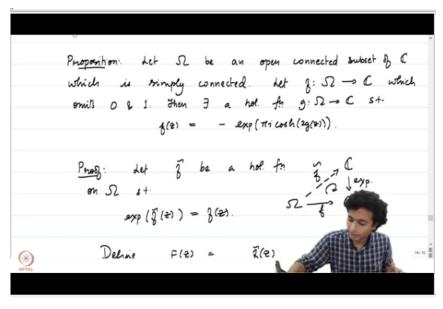
Little Picard's Theorem

The little Picard's theorem tells us that if you have a entire function which is non-constant then it cannot omit 2 points. We have developed all the machinery needed to prove the theorem, but we will first give a characterization of holomorphic functions defined on a simply connected domain which omits 2 points.

PROPOSITION 1. Let Ω be an open connected subset of $\mathbb C$ which is simply connected. Let $f:\Omega \longrightarrow \mathbb C$ be a holomorphic function which omits 0 and 1. Then there exists a holomorphic function $g:\Omega \longrightarrow \mathbb C$ such that

$$f(z) = -\exp(\pi i \cosh(2g(z))).$$

(Refer Slide Time: 02:45)

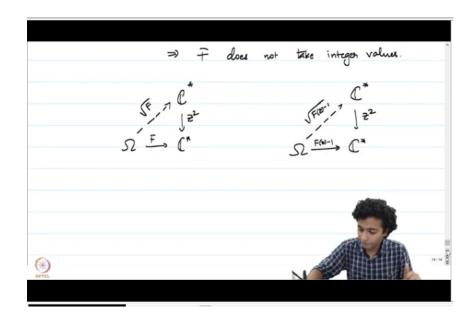


PROOF. Since $f:\Omega \longrightarrow \mathbb{C}^*$, we have a lift of f with respect to exp. Let \tilde{f} be a holomorphic function on Ω such that $\exp\left(\tilde{f}(z)\right)=f(z)$. Define $F(z)=\frac{\tilde{f}(z)}{2\pi i}$. If $F(z_0)=n$ for some $z_0\in\Omega$, then

$$f(z_0) = \exp(\tilde{f}(z_0)) = \exp(2\pi i n) = 1$$

which is a contradiction as $f(\Omega) \subseteq \mathbb{C} \setminus \{0,1\}$. Hence F does not take integer values.

(Refer Slide Time: 04:05)



Now, consider the covering map $p:\mathbb{C}^*\longrightarrow\mathbb{C}^*$ given by $p(z)=z^2$. Then we have a lift \sqrt{F} of F with respect to $p,\Omega\stackrel{\sqrt{F}}{\longrightarrow}\mathbb{C}^*$. Also since F does not take integer values, F(z)-1 does not vanish and is also holomorphic. Hence we have a lift $\sqrt{F(z)-1}$ of F(z)-1 with respect to $p,\Omega\stackrel{\sqrt{F(z)-1}}{\longrightarrow}\mathbb{C}^*$.

Define $H: \Omega \longrightarrow \mathbb{C}$ given by $H(z) = \sqrt{F(z)} - \sqrt{F(z) - 1}$. Notice that $H(z) \neq 0$ for every $z \in \Omega$. That is, $H: \Omega \longrightarrow \mathbb{C}^*$.

Then we have a lift g of H with respect to exp. That is $\exp(g(z)) = H(z)$. Note that

$$\cosh(2g(z)) + 1 = \frac{e^{2g(z)} + e^{-2g(z)}}{2} + 1$$

$$= \frac{\left(e^{g(z)} + e^{-g(z)}\right)^2}{2}$$

$$\implies \cosh(2g(z)) + 1 = \frac{\left(H(z) + \frac{1}{H(z)}\right)^2}{2}$$

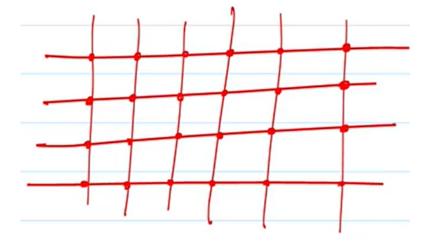
$$= 2F(z).$$

Thus,

$$f(z) = e^{\tilde{f}(z)} = e^{2\pi i F(z)} = e^{\pi i \cosh(2g(z))} e^{\pi i} = -e^{\pi i \cosh(2g(z))}.$$

PROPOSITION 2. The function g in the Proposition 1 does not contain any disk of radius 1 in its image.

PROOF. Let $S = \{ \pm \ln (\sqrt{n} + \sqrt{n-1}) + \frac{1}{2} im\pi : n \ge 1, m \in \mathbb{Z} \}$. Then notice that the points in the set S can be represented in complex plane as the darkened dots in the following grid.



Claim: $g(\Omega) \cap S = \emptyset$.

Assume that claim is true.

The height of each rectangle can be bounded by

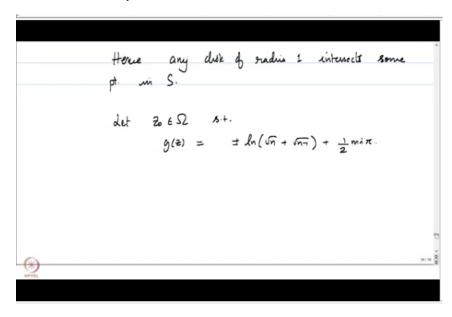
$$\left|\frac{i}{2}(m+1)\pi - \frac{i}{2}m\pi\right| = \frac{\pi}{2} < \sqrt{3}.$$

Also, if we define $\phi(x) = \ln(\sqrt{x+1} + \sqrt{x}) - \ln(\sqrt{x} + \sqrt{x-1})$, then one can verify that ϕ is a decreasing function and $\phi(1) < 1$. Thus, the width of each rectangle can be bounded by

$$\left|\ln\left(\sqrt{n+1}+\sqrt{n}\right)-\ln\left(\sqrt{n}+\sqrt{n-1}\right)\right|<1.$$

Hence the diagonal of each rectangle is bounded by $\sqrt{\sqrt{3}^2 + 1} = 2$.

(Refer Slide Time: 16:36)



Hence any disk of radius 1 intersects some point in *S* and by our assumption proposition follows. Thus it remains to prove the claim.

Let $z_0 \in \Omega$ be such that

$$g(z_0) = \pm \ln\left(\sqrt{n} + \sqrt{n-1}\right) + \frac{i}{2}m\pi.$$

Now,

$$\begin{aligned} 2\cosh\left(2g(z_0)\right) &= e^{2g(z_0)} + e^{-2g(z_0)} \\ &= e^{im\pi} \left(\left(\sqrt{n} + \sqrt{n-1}\right)^2 + \left(\sqrt{n} - \sqrt{n-1}\right)^2 \right) \\ &= (-1)^m 2(2n-1) \\ \cosh\left(2g(z_0)\right) &= (-1)^m (2n-1). \end{aligned}$$

Then,

$$f(z_0) = -\exp(\pi i \cosh(2g(z)))$$
$$= -\exp((2n-1)\pi i (-1)^m)$$
$$= 1$$

which is a contradiction.

What we have proved is, if f is holomorphic on Ω which omits 0 and 1, then there exists a holomorphic function g on Ω which does not have a disk of radius 1 contained in $g(\Omega)$.

THEOREM 3 (Little Picard's Theorem). If f is an entire function which omits two points, then f is a constant function.

PROOF. Let z_0 , z_1 be two distinct points which f omits. We may assume without loss of generality that $z_0 = 0$ and $z_1 = 1$,

$$f_1(z) = \frac{f(z) - z_0}{z_1 - z_0}.$$

That is, f_1 is an entire function omits 0 and 1.

(Refer Slide Time: 23:42)

By the proportion. I a entire for
$$g$$
 s.t.

 $g = -\exp(\pi i \cosh \ell g(x))$.

Re set I a disk of madria 1 contained in the image of g .

Assume g is non-containt

 $g = -\exp(\pi i \cosh \ell g(x))$.

Assume g is $g'(x) \neq 0$.

Define

 $g'(x) = g(x) = g(x)$.

By the Proposition 1 and Proposition 2, there exists an entire function g such that

$$f(z) = -\exp(\pi i \cosh(2g(z)))$$

which does not have a disk of radius 1 in the image of g.

Assume f is non-constant, then g is also non-constant.

Let $z_0 \in \mathbb{C}$ be such that $g'(z_0) \neq 0$. Define $h(z) = g(z+z_0) - g(z_0)$. Then h(0) = 0 and $h'(0) = g'(z_0)$. Now, it is left as an exercise to check that h is an entire function which also does not contain a disk of radius 1 in its image. Let R > 0 be some positive number and for 0 < r < R, define

$$\psi(z) = \frac{1}{r} h\left(\frac{rz}{h'(0)}\right).$$

Then $\psi(0) = 0$ and $\psi'(0) = \frac{1}{r}h'(0)\frac{r}{h'(0)} = 1$.

By Bloch's theorem,

$$D\left(0,\frac{1}{72}\right)\subseteq\psi(\mathbb{D}).$$

Thus, for $w \in D(0, \frac{r}{72})$, there exists $z \in \mathbb{D}$ such that

$$\frac{w}{r} = \frac{1}{r} h\left(\frac{rz}{h'(0)}\right) \implies w = h(z')$$
 where $z' \in \mathbb{C}$

$$\implies D\left(0, \frac{r}{72}\right) \subseteq h(\mathbb{C}).$$

But since r was arbitrary, we can choose r > 72, which is a contradiction.

Hence f is a constant function.