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Little Picard’s Theorem

The little Picard’s theorem tells us that if you have a entire function which is non-constant

then it cannot omit 2 points. We have developed all the machinery needed to prove the

theorem, but we will first give a characterization of holomorphic functions defined on a

simply connected domain which omits 2 points.

PROPOSITION 1. Let Ω be an open connected subset of C which is simply connected.

Let f :Ω−→ C be a holomorphic function which omits 0 and 1. Then there exists a holo-

morphic function g :Ω−→C such that

f (z) =−exp
(
πi cosh

(
2g (z)

))
.
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PROOF. Since f : Ω −→ C∗, we have a lift of f with respect to exp. Let f̃ be a holo-

morphic function onΩ such that exp
(

f̃ (z)
)= f (z). Define F (z) = f̃ (z)

2πi
.

If F (z0) = n for some z0 ∈Ω, then

f (z0) = exp
(

f̃ (z0)
)= exp(2πi n) = 1

which is a contradiction as f (Ω) ⊆C\ {0,1}. Hence F does not take integer values.

(Refer Slide Time: 04:05)

Now, consider the covering map p :C∗ −→C∗ given by p(z) = z2. Then we have a lift
p

F of F with respect to p, Ω
p

F−−→ C∗. Also since F does not take integer values, F (z)−1

does not vanish and is also holomorphic. Hence we have a lift
p

F (z)−1 of F (z)−1 with

respect to p,Ω
p

F (z)−1−−−−−−→C∗.

Define H :Ω−→C given by H(z) =p
F (z)−p

F (z)−1. Notice that H(z) ̸= 0 for every

z ∈Ω. That is, H :Ω−→C∗.



3

Then we have a lift g of H with respect to exp. That is exp
(
g (z)

)= H(z). Note that

cosh
(
2g (z)

)+1 = e2g (z) +e−2g (z)

2
+1

=
(
eg (z) +e−g (z)

)2

2

=⇒ cosh
(
2g (z)

)+1 =
(
H(z)+ 1

H(z)

)2

2

= 2F (z).

Thus,

f (z) = e f̃ (z) = e2πi F (z) = eπi cosh(2g (z))eπi =−eπi cosh(2g (z)).

□

PROPOSITION 2. The function g in the Proposition 1 does not contain any disk of ra-

dius 1 in its image.

PROOF. Let S = {± ln
(p

n +p
n −1

)+ 1
2 i mπ : n ≥ 1,m ∈Z}

. Then notice that the points

in the set S can be represented in complex plane as the darkened dots in the following

grid.
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Claim: g (Ω)∩S =∅.

Assume that claim is true.

The height of each rectangle can be bounded by∣∣∣∣ i

2
(m +1)π− i

2
mπ

∣∣∣∣= π

2
<p

3.

Also, if we define φ(x) = ln
(p

x +1+p
x
)− ln

(p
x +p

x −1
)
, then one can verify that φ is

a decreasing function and φ(1) < 1. Thus, the width of each rectangle can be bounded

by ∣∣∣ln(p
n +1+p

n
)
− ln

(p
n +p

n −1
)∣∣∣< 1.

Hence the diagonal of each rectangle is bounded by

√p
3

2 +1 = 2.

(Refer Slide Time: 16:36)

Hence any disk of radius 1 intersects some point in S and by our assumption propo-

sition follows. Thus it remains to prove the claim.

Let z0 ∈Ω be such that

g (z0) =± ln
(p

n +p
n −1

)
+ i

2
mπ.
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Now,

2cosh
(
2g (z0)

)= e2g (z0) +e−2g (z0)

= e i mπ

((p
n +p

n −1
)2 +

(p
n −p

n −1
)2

)
= (−1)m2(2n −1)

cosh
(
2g (z0)

)= (−1)m(2n −1).

Then,

f (z0) =−exp
(
πi cosh

(
2g (z)

))
=−exp

(
(2n −1)πi (−1)m)

= 1

which is a contradiction. □

What we have proved is, if f is holomorphic on Ω which omits 0 and 1, then there

exists a holomorphic function g on Ω which does not have a disk of radius 1 contained

in g (Ω).

THEOREM 3 (Little Picard’s Theorem). If f is an entire function which omits two

points, then f is a constant function.

PROOF. Let z0, z1 be two distinct points which f omits. We may assume without loss

of generality that z0 = 0 and z1 = 1,

f1(z) = f (z)− z0

z1 − z0
.

That is, f1 is an entire function omits 0 and 1.

(Refer Slide Time: 23:42)
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By the Proposition 1 and Proposition 2, there exists an entire function g such that

f (z) =−exp
(
πi cosh

(
2g (z)

))
which does not have a disk of radius 1 in the image of g .

Assume f is non-constant, then g is also non-constant.

Let z0 ∈ C be such that g ′(z0) ̸= 0. Define h(z) = g (z + z0)− g (z0). Then h(0) = 0 and

h′(0) = g ′(z0). Now, it is left as an exercise to check that h is an entire function which also

does not contain a disk of radius 1 in its image. Let R > 0 be some positive number and

for 0 < r < R, define

ψ(z) = 1

r
h

(
r z

h′(0)

)
.

Then ψ(0) = 0 and ψ′(0) = 1
r h′(0) r

h′(0) = 1.

By Bloch’s theorem,

D

(
0,

1

72

)
⊆ψ(D).

Thus, for w ∈ D
(
0, r

72

)
, there exists z ∈D such that

w

r
= 1

r
h

(
r z

h′(0)

)
=⇒ w = h(z ′) where z ′ ∈C
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=⇒ D
(
0,

r

72

)
⊆ h(C).

But since r was arbitrary, we can choose r > 72, which is a contradiction.

Hence f is a constant function. □


