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Bloch’s Theorem

The theorem due to Bloch is a prerequisite for proving the ‘Little Picard’s theorem’. Bloch’s

theorem tries to answer the following question: suppose we have an open connected set

Ωwhich contains D and consider the family

F = {
f :Ω−→C : f is holomorphic onΩ, f (0) = 0 and f ′(0) = 1

}
.

Then what is the largest disk that can be fitted up in f (D) for any f ∈F .

To begin with, let us try to prove a special case of Bloch’s theorem.
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PROPOSITION 1. Let f :D−→C be such that f (0) = 0, f ′(0) = 1 and | f (z)| ≤ M for each

z ∈D. Then D
(
0, 1

6M

)⊆ f (D).

PROOF. Consider the power series of f around 0,

f (z) = z + ∑
n≥2

an zn .
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Note that ∣∣ f (z)
∣∣≥ |z|−

∣∣∣∣ ∑
n≥2

an zn
∣∣∣∣ .

By Cauchy estimates, we have

|an | ≤
sup

z∈∂D(0,r )

∣∣ f (z)
∣∣

r n
≤ M

r n
for each 0 < r < 1.

Taking the limit as r −→ 1−, we have |an | ≤ M . Then,∣∣∣∣ ∑
n≥2

an zn
∣∣∣∣≤ M

∑
n≥2

|z|n = M
|z|2

1−|z| .

Hence, ∣∣ f (z)
∣∣≥ |z|−

(
M

|z|2
1−|z|

)
.

Our first observation is the number M should necessarily be at least 1. For proving this,

let us first assume M < 1, to arrive at a contradiction.

If M < 1, then f : D −→ D with f (0) = 0 and f ′(0) = 1, then by Schwarz’s lemma tells

that f (z) = λz for |λ| = 1. Then for z ∈D such that M < |z| < 1, we have | f (z)| = |z| > M ,

which is a contradiction. Hence M ≥ 1.

Now, for |z| = 1
4M < 1,

|z|−M
|z|2

1−|z| =
1

4M
−

M · 1
16M 2

1− 1
4M

= 1

4M
− 1

12M

= 2

12M

= 1

6M
.

Hence
∣∣ f (z)

∣∣≥ 1
6M on

{
z : |z| = 1

4M

}
.

Let w ∈ D
(
0, 1

6M

)
. Then, |w | < 1

6M ≤ | f (z)| on
{

z : |z| = 1
4M

}
. By Rouché’s theorem,

f (z)− w and f (z) has the same number of zeroes in D
(
0, 1

4M

)
. Then there exists z ∈

D
(
0, 1

4M

)
such that f (z) = w . Hence D

(
0, 1

6M

)⊆ f (D). □
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Let us now generalize this result to bit higher generality by stating and proving the

following proposition.

PROPOSITION 2. Let R > 0, f : D(0,R) −→ C be a holomorphic function such that

f (0) = 0,
∣∣ f ′(0)

∣∣=µ> 0 and
∣∣ f (z)

∣∣≤ M for each z ∈ D(0,R). Then

D

(
0,

R2µ2

6M

)
⊆ f (D(0,R)).

(Refer Slide Time: 11:20)

PROOF. Consider the function g on D given by,

g (z) =ψ2 ◦ f ◦ψ1(z),

where ψ1(z) = Rz and ψ2(z) = z
Rµ . Then note that

g : D(0,1)
ψ1−−→ D(0,R)

f−→ D(0, M)
ψ2−−→ D

(
0,

M

Rµ

)
.

That is g is a map into D
(
0, M

Rµ

)
. Now, g (0) = 0, g ′(0) = 1 and

∣∣g (z)
∣∣≤ M

Rµ for z ∈D. Then

by Proposition 1, we have D
(
0, Rµ

6M

)
⊆ g (D). Now it is left as an exercise to the reader to

conclude the result. □

Let us know prove the Bloch’s theorem which is in slightly more generality.
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THEOREM 3 (Bloch’s theorem). Let Ω be an open connected set in C such that D⊂Ω.

Suppose f : Ω −→ C be such that f (0) = 0 and f ′(0) = 1. Then there exists a disk D1

contained in D such that f ↾D1 is injective and

D

(
0,

1

72

)
⊆ f (D1) ⊆ f (D).

PROOF. Define M(r ) = sup
|z|=r

∣∣ f ′(z)
∣∣. Then M(r ) is continuous on [0,1] (Why?). Now,

define h(r ) := (1− r )M(r ). Hence h is continuous on [0,1]. Moreover, we have h(0) = 1

and h(1) = 0.

Let r0 = sup{r : h(r ) = 1}. Then h(r ) < 1 for r > r0. Since M(r0) = sup
|z|=r0

∣∣ f ′(z)
∣∣ and f is

also continuous on the compact set {z : |z| = r0}, there exists z0 such that |z0| = r0 with∣∣ f ′(z0)
∣∣= M(r0). Now, h(r0) = 1 =⇒ ∣∣ f ′(z0)

∣∣= 1
1−r0

.

(Refer Slide Time: 20:02)

Let ρ = 1
2 (1− r0) and consider D(z0,ρ). Let z ∈ D(z0,ρ). Then,

|z| ≤ r0 + 1

2
(1− r0) = 1

2
(1+ r0).

Since 1 > 1
2 (1+ r0) > r0 =⇒ h

(1
2 (1+ r0)

)< 1. That is,

1 >
(
1− 1

2
(1+ r0)

)
M

(
1

2
(1+ r0)

)
=⇒ M

(
1

2
(1+ r0)

)
< 1

1
2 (1− r0)

= 1

ρ
.
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By maximum modulus principle,∣∣ f ′(z)
∣∣< 1

ρ
for z ∈ D(z0,ρ).

Define g (z) = f ′(z)− f ′(z0) on D(z0,ρ). Then,

|g (z)| ≤ ∣∣ f ′(z)
∣∣+ ∣∣ f ′(z0)

∣∣< 1

ρ
+ 1

2ρ
= 3

2ρ
.

Consider the holomorphic function given by h(z) =ψ2 ◦ g ◦ψ1(z) that is

h :D
ψ1−−→ D(z0,ρ)

f−→ D

(
0,

3

2ρ

)
ψ2−−→D,

whereψ1(z) = z0+ρz andψ2(z) = 2ρ

3
z. Then h(0) = 0 and by Schwarz’s lemma, we have

∣∣ψ2 ◦ g ◦ψ1(z)
∣∣≤ |z| =⇒

∣∣∣∣2ρ

3
g (z)

∣∣∣∣≤ ∣∣ψ−1
1 (z)

∣∣= |z − z0|
ρ

=⇒ |g (z)| ≤ 3

2ρ2
|z − z0|.

Note that ∣∣ f ′(z0)− f ′(z)
∣∣= |g (z)| < 3

ρ2
|z − z0| < 3

ρ2
· ρ

3
= 1

2ρ
= | f ′(z0)|.

Put D1 := D
(
z0,

ρ

3

)
. Let z1, z2 ∈ D1. Then,

∣∣ f (z2)− f (z1)
∣∣= ∣∣∣∣∣

∫
γz1→z2

f ′(z)d z

∣∣∣∣∣
≥

∣∣∣∣∣
∫
γz1→z2

f ′(z0)d z

∣∣∣∣∣−
∣∣∣∣∣
∫
γz1→z2

(
f ′(z0)− f ′(z)

)
d z

∣∣∣∣∣
≥ ∣∣ f ′(z0)

∣∣ |z1 − z2|−
∣∣∣∣∣
∫
γz1→z2

(
f ′(z0)− f ′(z)

)
d z

∣∣∣∣∣
> ∣∣ f ′(z0)

∣∣ |z1 − z2|−
∣∣ f ′(z0)

∣∣ |z1 − z2| = 0.

That is, for each z1, z2 ∈ D1, we have | f (z2)− f (z1)| > 0. Hence f is injective on D1.

Thus we proved one part of the Bloch’s theorem. Let us now try to prove the remain-

ing part of the theorem, which says that D
(
0, 1

72

)⊆ f (D1).
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Define g̃ (z) = f (z + z0) − f (z0) on D
(
0, ρ3

)
. Then, we have g̃ (0) = 0 and

∣∣g̃ ′(0)
∣∣ =∣∣ f ′(z0)

∣∣= 1
2ρ .

(Refer Slide Time: 31:40)

For w ∈ D
(
0, ρ3

)
, γz0→z0+w ⊂ D1. Then

∣∣g̃ ′(w)
∣∣= ∣∣ f (w + z0)− f (z0)

∣∣= ∣∣∣∣∣
∫
γz0→z0+w

f ′(z)d z

∣∣∣∣∣< 1

ρ
|w | < 1

3
.

Hence g̃ : D
(
0, ρ3

) −→ C is such that g̃ (0) = 0, |g̃ (0)| = 1

2ρ
and |g̃ | < 1

3
for z ∈ D. Then by

Proposition 1, we have

D

0,

(ρ
3

)2
(

1
2ρ

)2

6 · 1
3

⊆ g̃
(
D

(
0,
ρ

3

))

=⇒ D

(
0,

1

72

)
⊆ g̃

(
D

(
0,
ρ

3

))
=⇒ D

(
0,

1

72

)
⊆ f (D1).

□


