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Bloch’s Theorem

The theorem due to Bloch is a prerequisite for proving the ‘Little Picard’s theorem’. Bloch’s
theorem tries to answer the following question: suppose we have an open connected set

Q which contains D and consider the family
F ={f:Q— C: f is holomorphic on Q, f(0) =0 and f'(0) = 1}.

Then what is the largest disk that can be fitted up in f(D) for any f € &.
To begin with, let us try to prove a special case of Bloch’s theorem.
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PROPOSITION 1. Let f : D — C be such that f(0) =0, f'(0) =1 and|f(z)| < M for each
zeD. Then D (0, z;) < f (D).

PROOE. Consider the power series of f around 0,

flz)=z+ Z a,z".

n=2

1



2

Note that

|f(@)] = 1z1- ) anz"
n=2
By Cauchy estimates, we have
sup |f(2)
z€dD(0,r) | | M
lay| < ——— = — foreach0<r<1.
rn rn

Taking the limit as r — 17, we have |a,| < M. Then,

Y anz"

n=2
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Hence,

|z
|f(2)| =12l - (M1_|Z|).

Our first observation is the number M should necessarily be at least 1. For proving this,
let us first assume M < 1, to arrive at a contradiction.

If M <1, then f: D — D with f(0) =0 and f'(0) = 1, then by Schwarz’s lemma tells
that f(z) = Az for |A| = 1. Then for z € D such that M < |z| < 1, we have | f(2)| = |z| > M,

which is a contradiction. Hence M = 1.

Now, for |z = ;37 < 1,
oom LM o7
s AM 1 1
1-|z| 4M ~ I3
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4M 12M
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Hence | f(2)| = g7 on {z: |z| = 4M}.
Let w € D(0, GM) Then, |w| < 57 < |f(2)| on {z:|z|= ﬁ} By Rouché’s theorem,

f(z) —w and f(z) has the same number of zeroes in D (0, ;7). Then there exists z €

D(o, 4M) such that f(z) = w. Hence D (0 ,GM) (D). O
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Let us now generalize this result to bit higher generality by stating and proving the

following proposition.

PROPOSITION 2. Let R >0, f: D(0,R) — C be a holomorphic function such that
f0)=0,|f'(0)| =p>0and|f(z)| < M foreach z € D(0,R). Then

RZ 2
D(O, - )gf(D(o,R)).
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PROOE. Consider the function g on D given by,

g(2)=vyo0 foyi(a),

where 11 (2) = Rz and ¥»(z) = R—ZH. Then note that

M
¢:D0,1) % po,R L Do, M) X2 D (0, R_u) .

That is g is a map into D(O,R—%). Now, g(0) =0,8'(0) =1 and |g(2)| < R—Aﬁ for z€ D. Then
by Proposition 1, we have D (0, é?Tl/l[) c g(D). Now it is left as an exercise to the reader to

conclude the result. O

Let us know prove the Bloch’s theorem which is in slightly more generality.



THEOREM 3 (Bloch’s theorem). LetQ be an open connected set in C such thatD c Q.
Suppose f : Q@ — C be such that f(0) = 0 and f'(0) = 1. Then there exists a disk D,

contained in D such that f [p, is injective and
plo.25)< oy r@
7)Y

PROOF. Define M(r) = sup |f’(z)|. Then M(r) is continuous on [0, 1] (Why?). Now,
|z|=r1
define h(r) := (1 — r)M(r). Hence h is continuous on [0, 1]. Moreover, we have h(0) =1

and h(1) =0.
Let ro = sup{r: h(r) = 1}. Then h(r) <1 for r > ry. Since M(ro) = sup |f’(z)| and f is

|z|=T19
also continuous on the compact set {z : |z| = rp}, there exists zy such that |zy| = ry with

| /' (20)| = M(rg). Now, h(rg) =1 = |f"(z0)| = =

1-r9°
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Letp = %(1 — o) and consider D(zy, p). Let z € D(z, p). Then,
|zl <1 +1(1 Io) 1(1+r)
zl < -(1-rg)== .
0t+3 0)=7 0

Since 1> 3(1+rg) > rg = h(%(l +19)) < 1. That s,

1>(1—1(1+r))M(1(1+r)):M(l(1+r))<;—l
2 )2 27 ) T la—ry o



By maximum modulus principle,
/ 1
|f' ()] <= for z € D(zp, p).
[y

Define g(z) = f'(z) — f'(z9) on D(zy, p). Then,

@l < te L3
|g(z)|5|f(Z)|+|f(zo)|<p+2‘O =25

Consider the holomorphic function given by h(z) =y, 0 goy,(z) thatis

3
h:Dﬂ»D(zo,p)iD(o,—)ﬂ»D,
2p

2
where 11 (z) = zo+ pzand Y2 (z) = ?pz. Then h(0) = 0 and by Schwarz’s lemma, we have

|z =zl

=|yi' @)=

2
[v20goyi(2)| <2l = '?pg(Z)

3
SN 2)| < —=lz—zgl.
8(2)| = 3512l
Note that

! ! 3 3 p 1 1
|f'(z0) - f'(2)| = 1g(2)] <?|Z_ZO| <;-§=5=|f (20)!-

Put D, := D(Zo,%). Let 21,22 € D;. Then,

£ (z2) - flzn)| = f Fl2dz
Y

Z1—2

v

f f(z0)dz
Y

21722

f (f'(z0) - f'(2)) dz
¥

Z1—2)

= | f'(z0)| 121 — 22| -

f (f'(z0) - f'(2)) dz
Y

Z]1—22

> | f(20)| 121 — 22| = | f'(20)| 121 — 22 = 0.

That is, for each z;,z, € D, we have | f(z2) — f(z1)| > 0. Hence f is injective on D;.
Thus we proved one part of the Bloch’s theorem. Let us now try to prove the remain-

ing part of the theorem, which says that D (0, 25) < f(Dy).



Define g(z) = f(z + z9) — f(z9) on D(O,%). Then, we have g(0) = 0 and |§’(0)| =
|f'(=0)| = =

2p°
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For w e D (0, %), Y z0—z20+w < D1. Then

|8'(w)| = | f(w+ z0) - f(z0)| =

1 1
<—|lw|<-.
P 3

f fl(z)dz
Yzg—zp+w

1 1
Hence g : D (0, %) — C is such that §(0) =0, |g(0)| = > and |g| < 3 for z € D. Then by
9

Proposition 1, we have



