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PROBLEM 1. Let Ω be a simply connected domain and f : Ω −→ C∗ be a function

which is holomorphic onΩ. Then prove that there exists a function h :Ω−→C such that

h is holomorphic and (h(z))n = f (z).

(Refer Slide Time: 02:29)

SOLUTION 1. Since f is non-vanishing, f ′
f is holomorphic onΩ. Then for any closed

curve γ onΩ, we have ∫
γ

f ′(z)

f (z)
d z = 0.

By the fundamental theorem of calculus, there exists an anti-derivative g of f ′
f onΩ.

Let z0 ∈ Ω and w0 ∈ C∗ be such that f (z0) = w0 and g be picked in such a manner

that eg (z0) = w0 (This can be done as the anti-derivative is determined uniquely up to

addition by a constant.).
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Consider the function
exp g (z)

f (z)
. Then,

d

d z

(
exp g (z)

f (z)

)
= f (z)g ′(z)exp(g (z))−exp(g (z)) f ′(z)(

f (z)
)2

= f ′(z)exp(g (z))− f ′(z)exp(g (z))(
f (z)

)2

= 0.

Therefore,
exp g (z)

f (z)
= constant. For z = z0, we have

exp g (z0)

f (z0)
= w0

w0
= 1.

Hence,

exp g (z)

f (z)
= 1 =⇒ exp(g (z)) = f (z).

Now, let us define h(z) = exp

(
g (z)

n

)
. Then,

(h(z))n = f (z).

PROBLEM 2. Let f :D−→D be a holomorphic map with two fixed points. Then prove

that f is identity.

SOLUTION 2. Let α and β be points in D such that f (α) = α and f (β) = β. Define

g :D−→D, given by

g (z) =ϕα ◦ f ◦ϕ−α(z),

where ϕα(z) = z −α
1− ᾱz

. Then g (0) = 0.

(Refer Slide Time: 10:23)
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Let β′ =ϕα(β). Then,

g (β′) =ϕα ◦ f ◦ϕ−α(β′)

=ϕα
(

f (β)
)

=ϕα(β)

=β′.

Hence by Schwarz’s lemma, g (z) = λz where |λ| = 1. Since g (β′) = β′, we have λβ′ = β′.

Hence λ= 1. That is,

g (z) = z

ϕα ◦ f ◦ϕ−α(z) = z

=⇒ f (z) =ϕ−α ◦ϕα(z)

= z.

Hence f is the identity.

Before going to the next problem, let us have a definition which will be using shortly. For

z, w ∈D, define

ρ(z, w) =
∣∣∣ z −w

1− w̄ z

∣∣∣ .
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PROBLEM 3 (Schwarz-Pick Theorem). Let f :D−→D be a holomorphic map. Then

ρ
(

f (z), f (w)
)≤ ρ(z, w) ∀z, w ∈D.

Furthermore, ∣∣ f ′(z)
∣∣

1− ∣∣ f (z)
∣∣2 ≤ 1

1−|z|2 ∀z ∈D.

SOLUTION 3. For z, w ∈D, define a map g given by,

g (ζ) =ϕ f (w) ◦ f ◦ϕ−w (ζ).

Then, notice that g :D−→D is holomorphic and g (0) = 0. By Schwarz’s lemma, we have,

(1)
∣∣g (ζ)

∣∣≤ |ζ| ∀ζ ∈D.

Let z ′ ∈D be such that z ′ =ϕw (z).

(Refer Slide Time: 18:49)

By (1),
∣∣g (z ′)

∣∣≤ |z ′|. Note that,

g (z ′) =ϕ f (w) ◦ f ◦ϕ−w
(
ϕw (z)

)
=ϕ f (w)

(
f (z)

)
= f (z)− f (w)

1− f (w) f (z)
.
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Then, ∣∣g (z ′)
∣∣= ∣∣∣∣∣ f (z)− f (w)

1− f (w) f (z)

∣∣∣∣∣= ρ (
f (z), f (w)

)
.

Also,

|z ′| = ∣∣ϕw (z)
∣∣= ∣∣∣ z −w

1−w z

∣∣∣= ρ(z, w).

Hence,

ρ
(

f (z), f (w)
)≤ ρ(z, w).

It is an exercise for the reader to check that, if f is an automorphism ofD, then the above

inequality is an equality.

Thus, for all z, w ∈D, we have∣∣∣∣∣ f (z)− f (w)

1− f (w) f (z)

∣∣∣∣∣≤ ∣∣∣ z −w

1−w z

∣∣∣ .

For z ̸= w , ∣∣∣∣ f (z)− f (w)

z −w

∣∣∣∣
∣∣∣∣∣ 1

1− f (w) f (z)

∣∣∣∣∣≤
∣∣∣∣ 1

1−w z

∣∣∣∣ .

By taking the limit as w −→ z, we have

∣∣ f ′(z)
∣∣ · 1

1− ∣∣ f (z)
∣∣2 ≤ 1

1−|z|2 .

PROBLEM 4. Let f be a non-constant entire function such that | f (z)| = 1 for all |z| = 1.

Describe f .

SOLUTION 4. By the maximum modulus principle, we have | f (z)| ≤ 1 for each z ∈D.

Claim: f has at least one zero in D.

If f does not have a zero in D, then 1
f is holomorphic on D and continuous on D.

(Refer Slide Time: 27:59)
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Note that,
∣∣∣ 1

f (z)

∣∣∣= 1 for |z|, and hence by maximum modulus principle,∣∣∣∣ 1

f (z)

∣∣∣∣≤ 1 ∀z ∈D.

Hence | f (z)| ≥ 1 onD. Since we already have | f (z)| ≤ 1 onD =⇒ | f (z)| = 1 onD. By open

mapping theorem, f is constant, which is a contradiction. Therefore f has at least one

zero in D.

Claim: f has finitely many zeroes in D.

If f has infinitely many zeroes in D, then the zeroes of f has a limit point by com-

pactness of D. Then, by the identity theorem, we have f ≡ 0, which is a contradiction as

f is non-constant. Hence f has only finitely many zeroes in D.

Let α1, . . . ,αn be zeroes of f of order d1, . . . ,dn in D. Then, we have

f (z) = (z −α1)d1 · · · (z −αn)dn h(z),

where h is a non-vanishing holomorphic function defined on D.

Consider the automorphism of unit disc ϕα j (z) = z −α j

1− ᾱ j z
. Since ϕα j being an auto-

morphism it has unique zero at α j of order 1. Hence, we have

ϕα j = (z −α j )ψ j (z),

where ψ j is non-vanishing on D. Then
(
ϕα j

)d j = (
z −α j

)d j
(
ψ j (z)

)d j .
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Define

g (z) = f (z)(
ϕα1

)d1 · · ·(ϕαn

)dn
.

Then, note that g has isolated singularity at α1, . . . ,αn .

Since α1 is a zero of f order d1, we have

g (z) = (z −α1)d1 f1(z)

(z −α1)d1
(
ψ1(z)

)d1
((
ϕα2 (z)

)d2 · · ·(ϕαn (z)
)dn

) .

Now, it is an exercise for the reader to check that g has a removable singularity at α1.

Similarly, prove that g has a removable singularity at α j for 1 ≤ j ≤ n.

For |z| = 1, we have∣∣g (z)
∣∣= ∣∣∣∣∣ f (z)(

ϕα1

)d1 · · ·(ϕαn

)dn

∣∣∣∣∣= | f (z)|∣∣ϕα1

∣∣d1 · · · ∣∣ϕαn

∣∣dn
= 1.

Since g does not vanish in D (why?), by a similar argument above, we have g (z) is a

constant function. Hence g (z) =λ, where |λ| = 1. Thus,

f (z) =λ(
ϕα1 (z)

)d1 · · ·(ϕαn (z)
)dn .


