Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 44 Problem Session

PROBLEM 1. Let Ω be a simply connected domain and $f : \Omega \longrightarrow \mathbb{C}^*$ be a function which is holomorphic on Ω . Then prove that there exists a function $h : \Omega \longrightarrow \mathbb{C}$ such that h is holomorphic and $(h(z))^n = f(z)$.

(Refer Slide Time: 02:29)

SOLUTION 1. Since *f* is non-vanishing, $\frac{f'}{f}$ is holomorphic on Ω . Then for any closed curve γ on Ω , we have

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0.$$

By the fundamental theorem of calculus, there exists an anti-derivative g of $\frac{f'}{f}$ on Ω .

Let $z_0 \in \Omega$ and $w_0 \in \mathbb{C}^*$ be such that $f(z_0) = w_0$ and g be picked in such a manner that $e^{g(z_0)} = w_0$ (This can be done as the anti-derivative is determined uniquely up to addition by a constant.). Consider the function $\frac{\exp g(z)}{f(z)}$. Then,

$$\frac{d}{dz}\left(\frac{\exp g(z)}{f(z)}\right) = \frac{f(z)g'(z)\exp(g(z)) - \exp(g(z))f'(z)}{\left(f(z)\right)^2}$$
$$= \frac{f'(z)\exp(g(z)) - f'(z)\exp(g(z))}{\left(f(z)\right)^2}$$

= 0.

Therefore, $\frac{\exp g(z)}{f(z)} = \text{constant.}$ For $z = z_0$, we have $\frac{\exp g(z_0)}{f(z_0)} = \frac{w_0}{w_0} = 1$. Hence,

$$\frac{\exp g(z)}{f(z)} = 1 \implies \exp(g(z)) = f(z).$$

Now, let us define $h(z) = \exp\left(\frac{g(z)}{n}\right)$. Then,

$$(h(z))^n = f(z).$$

PROBLEM 2. Let $f : \mathbb{D} \longrightarrow \mathbb{D}$ be a holomorphic map with two fixed points. Then prove that *f* is identity.

SOLUTION 2. Let α and β be points in \mathbb{D} such that $f(\alpha) = \alpha$ and $f(\beta) = \beta$. Define $g: \mathbb{D} \longrightarrow \mathbb{D}$, given by

$$g(z) = \varphi_{\alpha} \circ f \circ \varphi_{-\alpha}(z),$$

where $\varphi_{\alpha}(z) = \frac{z - \alpha}{1 - \bar{\alpha}z}$. Then g(0) = 0. (Refer Slide Time: 10:23)

2

Let $\beta' = \varphi_{\alpha}(\beta)$. Then,

$$g(\beta') = \varphi_{\alpha} \circ f \circ \varphi_{-\alpha}(\beta')$$
$$= \varphi_{\alpha} (f(\beta))$$
$$= \varphi_{\alpha}(\beta)$$
$$= \beta'.$$

Hence by Schwarz's lemma, $g(z) = \lambda z$ where $|\lambda| = 1$. Since $g(\beta') = \beta'$, we have $\lambda \beta' = \beta'$. Hence $\lambda = 1$. That is,

$$g(z) = z$$

$$\varphi_{\alpha} \circ f \circ \varphi_{-\alpha}(z) = z$$

$$\implies f(z) = \varphi_{-\alpha} \circ \varphi_{\alpha}(z)$$

$$= z.$$

Hence f is the identity.

Before going to the next problem, let us have a definition which will be using shortly. For $z, w \in \mathbb{D}$, define

$$\rho(z,w) = \left|\frac{z-w}{1-\bar{w}z}\right|.$$

PROBLEM 3 (Schwarz-Pick Theorem). Let $f : \mathbb{D} \longrightarrow \mathbb{D}$ be a holomorphic map. Then

$$\rho(f(z), f(w)) \le \rho(z, w) \qquad \forall z, w \in \mathbb{D}.$$

Furthermore,

$$\frac{\left|f'(z)\right|}{1-\left|f(z)\right|^{2}} \leq \frac{1}{1-|z|^{2}} \qquad \forall z \in \mathbb{D}.$$

SOLUTION 3. For $z, w \in \mathbb{D}$, define a map g given by,

$$g(\zeta)=\varphi_{f(w)}\circ f\circ\varphi_{-w}(\zeta).$$

Then, notice that $g : \mathbb{D} \longrightarrow \mathbb{D}$ is holomorphic and g(0) = 0. By Schwarz's lemma, we have,

(1)
$$|g(\zeta)| \leq |\zeta| \quad \forall \zeta \in \mathbb{D}.$$

Let $z' \in \mathbb{D}$ be such that $z' = \varphi_w(z)$.

(Refer Slide Time: 18:49)

By (1), $|g(z')| \le |z'|$. Note that,

$$g(z') = \varphi_{f(w)} \circ f \circ \varphi_{-w} (\varphi_w(z))$$
$$= \varphi_{f(w)} (f(z))$$
$$= \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)}.$$

4

Then,

$$\left|g(z')\right| = \left|\frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)}\right| = \rho\left(f(z), f(w)\right).$$

Also,

$$|z'| = \left|\varphi_w(z)\right| = \left|\frac{z-w}{1-\overline{w}z}\right| = \rho(z,w).$$

Hence,

$$\rho(f(z), f(w)) \le \rho(z, w).$$

It is an exercise for the reader to check that, if f is an automorphism of \mathbb{D} , then the above inequality is an equality.

Thus, for all $z, w \in \mathbb{D}$, we have

$$\left|\frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)}\right| \le \left|\frac{z - w}{1 - \overline{w}z}\right|.$$

For $z \neq w$,

$$\left|\frac{f(z) - f(w)}{z - w}\right| \left|\frac{1}{1 - \overline{f(w)}f(z)}\right| \le \left|\frac{1}{1 - \overline{w}z}\right|.$$

By taking the limit as $w \longrightarrow z$, we have

$$|f'(z)| \cdot \frac{1}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

PROBLEM 4. Let *f* be a non-constant entire function such that |f(z)| = 1 for all |z| = 1. Describe *f*.

SOLUTION 4. By the maximum modulus principle, we have $|f(z)| \le 1$ for each $z \in \mathbb{D}$. **Claim:** *f* has at least one zero in \mathbb{D} .

If f does not have a zero in \mathbb{D} , then $\frac{1}{f}$ is holomorphic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. (Refer Slide Time: 27:59)

 $\left| \frac{1}{3} \left(\frac{1}{2} \right) \right| = 1$ or 121 = 1. We have max mod principle, $\left| \frac{1}{3} \left(\frac{1}{2} \right) \right| \leq 1$ or D.

Note that, $\left|\frac{1}{f(z)}\right| = 1$ for |z|, and hence by maximum modulus principle,

$$\left|\frac{1}{f(z)}\right| \le 1 \qquad \forall \, z \in \mathbb{D}.$$

Hence $|f(z)| \ge 1$ on \mathbb{D} . Since we already have $|f(z)| \le 1$ on $\mathbb{D} \implies |f(z)| = 1$ on \mathbb{D} . By open mapping theorem, *f* is constant, which is a contradiction. Therefore *f* has at least one zero in \mathbb{D} .

Claim: *f* has finitely many zeroes in \mathbb{D} .

If *f* has infinitely many zeroes in $\overline{\mathbb{D}}$, then the zeroes of *f* has a limit point by compactness of $\overline{\mathbb{D}}$. Then, by the identity theorem, we have $f \equiv 0$, which is a contradiction as *f* is non-constant. Hence *f* has only finitely many zeroes in \mathbb{D} .

Let $\alpha_1, \ldots, \alpha_n$ be zeroes of *f* of order d_1, \ldots, d_n in \mathbb{D} . Then, we have

$$f(z) = (z - \alpha_1)^{d_1} \cdots (z - \alpha_n)^{d_n} h(z),$$

where *h* is a non-vanishing holomorphic function defined on \mathbb{D} .

Consider the automorphism of unit disc $\varphi_{\alpha_j}(z) = \frac{z - \alpha_j}{1 - \bar{\alpha_j} z}$. Since φ_{α_j} being an automorphism it has unique zero at α_j of order 1. Hence, we have

$$\varphi_{\alpha_i} = (z - \alpha_j) \psi_j(z),$$

where ψ_j is non-vanishing on \mathbb{D} . Then $\left(\varphi_{\alpha_j}\right)^{d_j} = \left(z - \alpha_j\right)^{d_j} \left(\psi_j(z)\right)^{d_j}$.

(Refer Slide Time: 35:05)

Define

$$g(z) = \frac{f(z)}{(\varphi_{\alpha_1})^{d_1} \cdots (\varphi_{\alpha_n})^{d_n}}.$$

Then, note that *g* has isolated singularity at $\alpha_1, \ldots, \alpha_n$.

Since α_1 is a zero of *f* order d_1 , we have

$$g(z) = \frac{(z - \alpha_1)^{d_1} f_1(z)}{(z - \alpha_1)^{d_1} (\psi_1(z))^{d_1} ((\varphi_{\alpha_2}(z))^{d_2} \cdots (\varphi_{\alpha_n}(z))^{d_n})}.$$

Now, it is an exercise for the reader to check that *g* has a removable singularity at α_1 . Similarly, prove that *g* has a removable singularity at α_j for $1 \le j \le n$.

For |z| = 1, we have

$$\left|g(z)\right| = \left|\frac{f(z)}{(\varphi_{\alpha_1})^{d_1}\cdots(\varphi_{\alpha_n})^{d_n}}\right| = \frac{|f(z)|}{|\varphi_{\alpha_1}|^{d_1}\cdots|\varphi_{\alpha_n}|^{d_n}} = 1.$$

Since *g* does not vanish in \mathbb{D} (why?), by a similar argument above, we have g(z) is a constant function. Hence $g(z) = \lambda$, where $|\lambda| = 1$. Thus,

$$f(z) = \lambda \left(\varphi_{\alpha_1}(z) \right)^{d_1} \cdots \left(\varphi_{\alpha_n}(z) \right)^{d_n}.$$