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Phragmen-Lindelöf Method

Now we will take a closer look at the maximum modulus principle. The Phragmen-

Lindelöf method is, in some sense, a generalization of the maximum modulus principle

to the unbounded domains in the complex plane.

LetΩ be a bounded open connected set inC and f :Ω−→C be continuous onΩ and

holomorphic onΩ. If f is non-constant, then by the open mapping theorem, there does

not exists z1 ∈Ω such that f attains a local maximum at z1. Since f is continuous onΩ,

there exists z0 ∈Ω such that

| f (z0)| = sup
z∈Ω

| f (z)|.

Since z0 ̸∈Ω, we have z0 ∈ ∂Ω.

Hence sup
z∈Ω

| f (z)| = sup
z∈∂Ω

| f (z)|. If the supremum is attained at an interior, then f is

constant.

But, when we ask a similar question on an unbounded domain, we do not have such

an answer. In fact, this exact statement, when considered in unbounded domains, is

going to be false. Let us discuss an example to illustrate that this particular statement

will not go through for unbounded domains.
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Consider Ω = {
z ∈C : −π

2 < Im(z) < π
2

}
. Then notice that Ω is an unbounded set,

which is an infinite strip that contains all points in between the horizontal ray that

passes through i −π
2 and the horizontal ray that passes through i π2 . In this region, con-

sider the function f given by f (z) = exp(exp(z)). Then, on the boundary of this domain,

an element z ∈ ∂Ωwill be of the form z = x ± i π2 . Observe that

exp
(
x ± i

π

2

)
=±i ex

and hence ∣∣∣ f
(
x ± i

π

2

)∣∣∣= ∣∣exp
(±i ex)∣∣= 1.

That is, on the boundary, | f | is 1. But,

lim
x→∞ | f (x)| =∞.

Clearly, the maximum modulus principle fails in this particular setup. So, the fact that

Ω is bounded was playing a crucial role.

We dropped the condition that Ω is bounded and we ended up with this kind of a

situation. So, we will ask the next question, what is the next best thing that can be done?
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That is where the Phragmen-Lindelöf method comes into our picture. But before going

to that, let us describe a couple of application of the method.

When we looked at the Liouville’s theorem, it told us that bounded entire functions

are necessarily constant. But if we impose the following condition: suppose f is entire

and | f (z)| ≤ M +|z|1/2, then we claim that all entire functions with this growth condition

will also be constant. The proof is actually very similar to how we proved Liouville’s

theorem.

On D(0,R), by Cauchy estimates, we have

∣∣ f (n)(0)
∣∣≤ n!

(
M +R1/2

)
Rn

.

As R →∞, we have f (n)(0) = 0 for each n ≥ 1. Since f is an entire function, f has power

series expansion around 0. That is,

f (z) =
∞∑

n=0
an zn

around 0. But, then an = f n (0)
n! = 0 for each n ≥ 1. Hence f (z) = a0.

That is, even with a weaker growth condition like this, we will be able to conclude

the same result as Liouville’s theorem.

THEOREM 1. LetΩ= {z ∈C : a <Re(z) < b}. Let f :Ω−→C be such that f is continu-

ous onΩ and holomorphic onΩ. Suppose
∣∣ f (z)

∣∣< B, for some large B > 0, and let

M(x) = sup
{∣∣ f (x + i y)

∣∣ : −∞< y <∞}
.

Then,

M(x)b−a ≤ M(a)b−x M(b)x−a .

(Refer Slide Time: 13:49)
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The theorem tells us that, for z ∈Ω, z = x + i y , then

| f (z)| ≤ M(x) ≤ max{M(a), M(b)} = sup
z∈∂Ω

| f (z)|.

PROOF. Let us assume that M(a) = M(b) = 1. For ϵ > 0, define an auxiliary function

hϵ to be,

hϵ(z) = 1

1+ϵ(z −a)
.

Note that,

|1+ϵ(z −a)| >Re(1+ϵ(z −a)) = 1+ϵ(x −a) ≥ 1.

Hence,

|hϵ(z)| ≤ 1 ∀z ∈Ω.

By our assumption that M(a) = 1 = M(b), for each z ∈ ∂Ω, we have | f (z)| ≤ 1. Hence,

∣∣ f (z)hϵ(z)
∣∣≤ 1 ∀z ∈ ∂Ω.
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Consider the set E = {
z = x + i y ∈Ω : |y | ≥ B

ϵ

}
, then B

ϵ|y | ≤ 1. If z = x+i y ∈ E , then observe

that Im(1+ϵ(z −a)) = ϵy

=⇒ |1+ϵ(z −a)| ≥ ϵ|y |

=⇒ |hϵ(z)| ≤ 1

ϵ|y |
=⇒ ∣∣ f (z)hϵ(z)

∣∣≤ B

ϵ|y | ≤ 1.

(Refer Slide Time: 23:31)

Let R be the rectangle on C bounded by the lines x = a, x = b, y = B
ϵ

and y = −B
ϵ

.

Observe that
∣∣ f (z)hϵ(z)

∣∣≤ 1 for z ∈ ∂R and hence by the maximum modulus princi-

ple, we have
∣∣ f (z)hϵ(z)

∣∣ ≤ 1 for z ∈ R. Since
∣∣ f (z)hϵ(z)

∣∣ ≤ 1 for z ∈ E , and by the above

observation, ∣∣ f (z)hϵ(z)
∣∣≤ 1 for z ∈Ω.

Now, as ϵ−→ 0, we have f (z)hϵ(z) −→ f (z). Hence
∣∣ f (z)

∣∣≤ 1.

That is, with our assumption that M(a) = M(b) = 1, we have

M(x) ≤ 1 =⇒ M(x)b−a ≤ 1 = 1b−x ·1x−a = M(a)b−x M(b)x−a .

Now, let us try to prove the more general case.
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Define

g (z) = exp

(
b − z

b −a
ln M(a)

)
exp

( z −a

b −a
ln M(b)

)
.

Now, let us see what happens when we look at g on the boundary ofΩ.

|g (a + i y)| =
∣∣∣∣exp

(
b − (a + i y)

b −a
ln M(a)

)∣∣∣∣ ∣∣∣∣exp

(
(a + i y)−a

b −a
ln M(b)

)∣∣∣∣
=

∣∣∣exp
((

1− i
y

b −a

)
ln M(a)

)∣∣∣ ∣∣∣exp
(
i

y

b −a
ln M(b)

)∣∣∣
=

∣∣∣exp
(
ln M(a)+ i

( −y

b −a
ln M(a)

))∣∣∣ ·1

= exp(ln(M(a))) = M(a).

Similarly,

|g (b + i y) = M(b).

Now, it is an exercise for the reader to check that 1
g is bounded onΩ.

Consider f
g and then we have

∣∣∣ f (z)
g (z)

∣∣∣≤ 1 for each z ∈Ω.

From here one could conclude the result in the general case. (Exercise.) □

So, what did we do in this entire theorem? We somehow introduced an auxiliary

function hϵ and using hϵ, we reduced the problem partly to a problem of the maximum

modulus principle being applied on some bounded function a bounded domain. And

that is precisely what is referred to as the Phragmen-Lindelöf method.

Let us look at one more example of the Phragmen-Lindelöf method on another un-

bounded domain which now is going to be a horizontal strip rather than a vertical strip.

(Refer Slide Time: 33:22)
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THEOREM 2. Let Ω = {
z ∈C : −π

2 < Im(z) < π
2

}
. Let f : Ω −→ C be continuous on Ω

and holomorphic on Ω. Suppose | f (z)| ≤ 1 for z ∈ ∂Ω, | f (z)| ≤ exp(A ·exp(α|x|)), where

z = x + i y, A <∞ and α< 1, then | f (z)| ≤ 1 for each z ∈Ω.

PROOF. Let β> 0 be such that α<β< 1. For ϵ> 0, define an auxiliary function hϵ(z)

to be

hϵ(z) := exp
(
−ϵ

(
eβz +e−βz

))
.

Now, notice that for z = x + i y ∈Ω,

Re
(
−ϵ

(
eβz +e−βz

))
=−ϵ

(
eβx +e−βx

)
cosβy.

Since −π
2 < y < π

2 , and β< 1, we have

cos
(
βy

)> cos
(
β
π

2

)
= δ.
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Hence, onΩ, we have

|hϵ(z)| =
∣∣∣exp

(
−ϵ

(
eβx +e−βx

)
cosβy

)∣∣∣ ∣∣∣exp
(
iϵ

(
e−βx −eβx

)
sinβy

)∣∣∣
= exp

(
−ϵ

(
eβx +e−βx

)
cosβy

)
= exp

(
−ϵ

(
eβx +e−βx

)
cosβ

)
< exp

(
−ϵδ

(
eβx +e−βx

))
< 1

Consider the function f hϵ, then | f (z)hϵ(z)| ≤ 1 for z ∈ ∂Ω. For z ∈Ω,

| f (z)hϵ(z)| ≤ exp(A ·exp(α|x|))exp
(
−ϵδ

(
eβx +e−βx

))
= exp

(
A ·exp(α|x|)−ϵδ

(
eβx +e−βx

))
.

Check that
(

A ·exp(α|x|)−ϵδ(
eβx +e−βx

))−→−∞ as x −→∞ or x −→−∞.

Hence | f (z)hϵ(z)| < 1 for |x| ≥ x0 for some x0 > 0.

(Refer Slide Time: 44:10)

Let R the rectangle with sides x =±x0 and y =±π
2 . Then on ∂R, we have | f (z)hϵ(z)| ≤

1. By the maximum modulus principle, | f (z)hϵ(z)| ≤ 1 on R.



9

Therefore, | f (z)hϵ(z)| ≤ 1 for every z ∈ Ω. Since ϵ > 0 was arbitrary, hϵ(z) −→ 1 as

ϵ−→ 0 for each z ∈Ω. Hence | f (z)| ≤ 1 onΩ. □


