Complex Analysis

Prof. Pranav Haridas

Kerala School of Mathematics

Lecture No - 42

Automorphisms of the Unit Disk

(Refer Slide Time: 01:01)

Recall that the maximum modulus principle states that if
$$J: \mathcal{D} \to \mathcal{C}$$
 be a hol. for on an open set $SL \subseteq \mathcal{C}$ & K be a compact subset of SL , then $|J(2)| \leqslant \sup_{R \in J} |J(2)| \qquad \forall Z \in K$.

We have already seen the maximum modulus principle for holomorphic functions. It states that if $f:\Omega\longrightarrow\mathbb{C}$ is a holomorphic function on an open set $\Omega\subseteq\mathbb{C}$ and $K\subseteq\Omega$ is a compact set, then

$$\sup_{z \in K} |f(z)| \le \sup_{z \in \partial K} |f(z).$$

Here we will be giving a phenomenal application of the maximum modulus principle in proving the very famous Schwarz's lemma and thereafter, we will give a characterization of the automorphisms of the unit disk. Automorphisms are holomorphic functions from the unit disk to itself, which has a holomorphic inverse.

LEMMA 1 (Schwarz's Lemma). Let $f: \mathbb{D} \longrightarrow \mathbb{D}$ be a holomorphic function such that f(0) = 0. Then $|f(z)| \le |z|$ for every $z \in \mathbb{D}$ and $|f'(0)| \le 1$.

Furthermore, if |f(z)| = |z| for some $z \in \mathbb{D} \setminus \{0\}$ or if |f'(0)| = 1, then there exists $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $f(z) = \lambda z$.

PROOF. Since f(0) = 0, we have $g(z) = \frac{f(z)}{z}$ has a removable singularity at 0.

Let 0 < r < 1. By the maximum modulus principle on $\overline{D(0,r)}$ applied to g, we have

$$|g(z)| \le \frac{\sup_{|z|=r} |f(z)|}{r} \qquad \forall z \in \overline{D(0,r)}$$

$$\le \frac{1}{r}.$$

Since this is true for 0 < r < 1, taking limit $r \to 1$, we have $|g(z)| \le 1$ for each $z \in D(0,1)$. That is,

$$\frac{|f(z)|}{|z|} \le 1 \qquad \text{for every } z \in D(0,1).$$

Hence,

$$|f(z) \le |z|$$
 for every $z \in D(0,1)$.

Notice that f'(0) = g(0) and since $|g(0)| \le 1$ we have $|f'(0)| \le 1$.

If |g(z)| = 1 for some $z \in \mathbb{D}$, then g is a constant function. That is,

 $g(z) = \lambda$, for every $z \in \mathbb{D}$ and for some λ such that $|\lambda| = 1$.

Hence, $|f(z)| = \lambda z$ for every $z \in \mathbb{D}$. Similarly, if |g(0)| = 1, we have $f(z) = \lambda z$ for each $z \in \mathbb{D}$ and some λ such that $|\lambda| = 1$.

Now, let us consider some special functions on the unit disk \mathbb{D} . For $\alpha \in \mathbb{D}$, define $\varphi_{\alpha} : \mathbb{D} \longrightarrow \mathbb{C}$ given by,

$$\varphi_{\alpha}(z) := \frac{z - \alpha}{1 - \bar{\alpha}z}.$$

Notice that φ_{α} is a Möbius transformation with a pole on $\frac{1}{\bar{\alpha}}$. But since $\alpha \in \mathbb{D}$, we have $\frac{1}{\bar{\alpha}} \notin \mathbb{D}$. Hence this function is holomorphic in a neighborhood of the closure of the unit disk for each $\alpha \in \mathbb{D}$.

(Refer Slide Time: 14:15)

$$\frac{\varphi_{\alpha}\left(\varphi_{-\alpha}\left(z\right)\right)}{\left(-\frac{1}{\alpha}\frac{z+\alpha}{z+\alpha}\right)} = \frac{\frac{\overline{z}+\alpha}{1+\overline{\alpha}z} - \alpha}{\frac{1+\overline{\alpha}z}{1+\overline{\alpha}z}} = \frac{(1-|\alpha|^2)^{\frac{1}{2}}}{(1-|\alpha|^2)} = \frac{\overline{z}+\alpha}{(1-|\alpha|^2)}$$

Now,

$$\varphi_{\alpha}(\varphi_{-\alpha}(z)) = \frac{\frac{z+\alpha}{1+\bar{\alpha}z} - \alpha}{1-\bar{\alpha}\frac{z+\alpha}{1+\bar{\alpha}z}}$$

$$= \frac{z+\alpha-\alpha-|\alpha|^2 z}{1+\bar{\alpha}z-\bar{\alpha}z-|\alpha|^2}$$

$$= \frac{(1-|\alpha|^2)z}{(1-|\alpha|^2)}$$

$$= z.$$

Hence, $\varphi_{-\alpha}$ and φ_{α} are holomorphic functions which are inverses of each other. Observe that,

$$\begin{aligned} \left| \varphi_{\alpha} \left(e^{i\theta} \right) \right| &= \left| \frac{e^{i\theta} - \alpha}{1 - \bar{\alpha} e^{i\theta}} \right| \\ &= \frac{\left| e^{i\theta} - \alpha \right|}{\left| e^{i\theta} \right| \left| e^{-i\theta} - \bar{\alpha} \right|} \\ &= \frac{\left| e^{i\theta} - \alpha \right|}{\left| e^{i\theta} - \alpha \right|} \\ &= 1. \end{aligned}$$

That is, $|\varphi_{\alpha}(z)| = 1$ for each $z \in \partial \mathbb{D}$. By maximum modulus principle, we have $|\varphi_{\alpha}(z)| \leq 1$ for each $z \in \mathbb{D}$. That is image of φ_{α} is contained in \mathbb{D} , also, since it is not a constant function $\varphi_{\alpha}(\mathbb{D})$ will be an open subset of \mathbb{D} . By a very similar argument, we have $|\varphi_{-\alpha}(z)| \leq 1$ for each $z \in \mathbb{D}$. Combining these two facts, we have $\varphi_{\alpha}(\mathbb{D}) = \mathbb{D}$.

That is, $\varphi_{\alpha}: \mathbb{D} \longrightarrow \mathbb{D}$ is a holomorphic map of \mathbb{D} to itself which has a holomorphic inverse.

DEFINITION 1 (Automorphism). We say that a function $f:\Omega \longrightarrow \Omega$ is an automorphism if f is holomorphic and has a holomorphic inverse.

By what we have done above, φ_{α} is an automorphism of \mathbb{D} for each $\alpha \in \mathbb{D}$. Observe that φ_{α} has some nice properties like,

$$\varphi_{\alpha}(\alpha) = 0, \qquad \varphi_{\alpha}(0) = -\alpha, \qquad \varphi_{-\alpha}(0) = \alpha.$$

Also,

$$\varphi'_{\alpha}(0) = 1 - |\alpha|^2$$
 $\qquad \varphi'_{\alpha}(\alpha) = \frac{1}{1 - |\alpha|^2}.$

Now, let us try to answer the following question:

Question: Let $f : \mathbb{D} \longrightarrow \mathbb{D}$ be a holomorphic function such that $f(\alpha) = \beta$, where $\alpha, \beta \in \mathbb{D}$. What is the maximum value of $|f'(\alpha)|$?

That is, we are asking for $\sup\{|f'(\alpha)|:f:\mathbb{D}\longrightarrow\mathbb{D} \text{ holomorphic and } f(\alpha)=\beta\}.$

Define $g(z) = \varphi_{\beta} \circ f \circ \varphi_{-\alpha}(z)$. Then g is a holomorphic function, $g : \mathbb{D} \longrightarrow \mathbb{D}$ and g(0) = 0. Then by Schwarz's lemma, $|g'(0)| \le 1$.

Check that, by chain rule,

$$g'(0) = \varphi'_{\beta}(\beta) f'(\alpha) \varphi'_{-\alpha}(0).$$

Then,

$$\left| g'(0) \right| = \frac{1}{1 - \left| \beta \right|^2} \left| f'(\alpha) \right| \left(1 - |\alpha|^2 \right) \le 1.$$

$$\implies \left| f'(\alpha) \right| \le \frac{1 - \left| \beta \right|^2}{1 - \left| \alpha \right|^2}.$$

This is the upper bound of what $|f'(\alpha)|$ can have in terms of α and β . Let us now check whether we can attain this value of some function.

(Refer Slide Time: 26:28)

98
$$|g'(0)|=1$$
 =) $g(\overline{z}) = \lambda \overline{z}$
=) $\varphi_{\beta} \circ \beta \circ \varphi_{\alpha}(\overline{z}) = \lambda \overline{z}$
=) $g(\overline{z}) = \varphi(\lambda \varphi_{\alpha}(\overline{z}))$
Comides $g(\overline{z}) = \varphi_{\beta}(\lambda \varphi_{\alpha}(\overline{z}))$
given by $g(\overline{z}) = \varphi_{\beta}(\lambda \varphi_{\alpha}(\overline{z}))$.

If |g'(0)| = 1, then by Schwarz's lemma $g(z) = \lambda z$ for some λ with $|\lambda| = 1$. That is,

$$g(z) = \lambda z$$

$$\implies \varphi_{\beta} \circ f \circ \varphi_{-\alpha}(z) = \lambda z$$

$$\implies f(z) = \varphi_{-\beta} (\lambda \varphi_{\alpha}(z)).$$

Hence if we consider the function $f:\mathbb{D}\longrightarrow\mathbb{D}$ given by $f(z)=\varphi_{-\beta}\left(\lambda\varphi_{\alpha}(z)\right)$, then

$$|f'(\alpha)| = \frac{1-|\beta|^2}{1-|\alpha|^2}.$$

THEOREM 2. Let $f : \mathbb{D} \longrightarrow \mathbb{D}$ be an automorphism. Then there exist $\alpha \in \mathbb{D}$ and $\lambda \in \partial \mathbb{D}$ such that $f(z) = \lambda \varphi_{\alpha}(z)$.

PROOF. Since f is an automorphism, there exists $\alpha \in \mathbb{D}$ such that $f(\alpha) = 0$. Let $g\mathbb{D} \longrightarrow \mathbb{D}$ be the holomorphic function such that

$$g(f(z)) = z$$
 for $z \in \mathbb{D}$.

By chain rule, we have

(1)
$$g'(0)f'(\alpha) = 1.$$

We know from the previous discussion that,

$$\left|g'(0)\right| \le 1 - |\alpha|^2$$

and

$$|f'(\alpha) \le \frac{1}{1 - |\alpha|^2}.$$

Hence

$$|g'(0)f'(\alpha)| \le 1.$$

(Refer Slide Time: 32:29)

By observing the equality in (1), it is possible only if the above inequalities are equalities. Then,

$$|f'(\alpha)| = \frac{1}{1 - |\alpha|^2}$$

and it is possible only if

$$f(z) = \lambda \varphi_{\alpha}(z)$$
.