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Branch of the Logarithm

When we proved the argument principle, we defined the notion of the log-derivative of a

holomorphic function f as the meromorphic function f ′
f . We even checked that the log-

derivative satisfies some of the properties, which the complex logarithm is expected to

satisfy. We did all that without really defining what is meant by the complex logarithm in

the complex setting. We are familiar with the same notion in the real setting. However,

the notion has to be made precise in the complex setting.

(Refer Slide Time: 02:00)

Recall that the logarithm ln : (0,∞) −→ R to be the function which inverts the ex-

ponential function on R. This definition cannot be generalized to define the complex

logarithm. Notice that the exponential function exp : C −→ C \ {0} satisfy the property

that

ez = ew ⇐⇒ z = w +2πi k for k ∈Z.

Thus exp is not injective.

For z ∈C∗ =C\ {0}, let us denote log(z) to be the set

log(z) = {w ∈C : exp(w) = z}.
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If w = ln |z|+ iθ for θ ∈ arg(z) = {
θ ∈R : z = |z|e iθ

}
, then ew = |z|e iθ = z.

That is an alternate way of looking at it, but this is not something which we will be

satisfied with. We would like to really get hold of an ‘honest’ function f , which inverts

the exponential function. Let us try to define one such function and in order to do that

let us revisit from the real analysis setting; what we did, when we encountered real val-

ued functions?

Let us consider a function on Rwhich is not injective. One such function is f :R−→
[0,∞) given by f (x) = x2. Given x > 0, there exist two real numbers

p
x,−px such that(p

x
)2 = (−px

)2 = x. By picking one of the square roots, we worked freely with the square

root.

By a branch of the square root, we mean a function g : [0,∞) −→R such that(
g (x)

)2 = x.

Can we have a g which is continuous?

Define g (x) =p
x, where

p
x > 0, then g is continuous branch of the square root. We

could also define other branches as well. For example, define g (x) =−px where
p

x > 0,

then also g is continuous branch of the square root.

Observe that, we could also define a branch of the square root which is not continu-

ous. For example, define,

g (x) :=


p

x 0 ≤ x ≤ 10

−px x > 10

then g will be a branch of the square root, but g is not a continuous function as g has a

discontinuity at x = 10.

DEFINITION 1 (Branch of the logarithm). Let Ω be an open connected subset of C∗.

By a branch of the logarithm onΩ, we mean a function f :Ω−→C such that

exp
(

f (z)
)= z for each z ∈Ω

.
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LetΩ=C\{0} =C∗. Suppose f is a branch of logarithm on C∗. That is f :C∗ −→C be

a function such that exp
(

f (z)
)= z.

(Refer Slide Time: 13:44)

One can ask this question: Can f be a holomorphic function?

If f were holomorphic, then by chain rule applied to the equation exp
(

f (z)
)= z, we

have

1 = d

d z

(
exp

(
f (z)

))= f ′(z)exp
(

f (z)
)= z f ′(z)

=⇒ f ′(z) = 1

z
.

Let γ(t ) = e i t for t ∈ [0,2π] in C∗. Since f is the anti-derivative of 1
z in C∗, by the funda-

mental theorem of calculus, we have∫
γ

f ′(z)d z = 0.

But, ∫
γ

f ′(z)d z =
∫
γ

d z

z
= 2πi ̸= 0.

Hence if we have a holomorphic branch of the logarithm on C∗, then we have a contra-

diction.

Let Ω be an open connected subset of C∗. Further let Ω be simply connected. Con-

sider the function 1
z which is holomorphic on Ω. Let γ be any simply closed curve. By

Cauchy’s theorem, ∫
γ

d z

z
= 0.
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By the fundamental theorem of calculus, there exists a function f : Ω −→ C such that

f ′(z) = 1
z .

Let f be an anti-derivative such that given z0 and w0 with ez0 = w0, we have f (w0) =
z0. Since f is holomorphic onΩ, by chain rule

d

d z

(
exp

(
f (z)

))= f ′(z)exp
(

f (z)
)= exp

(
f (z)

)
z

.

Now, by the quotient rule

d

d z

(
exp

(
f (z)

)
z

)
= exp

(
f (z)

)−exp
(

f (z)
)

z2
= 0 ∀z ∈Ω.

=⇒ exp
(

f (z)
)

z
= C , a constant.

For z = w0, we have

exp
(

f (w0)
)= exp(z0) = w0.

Hence
exp

(
f (w0)

)
w0

=C = 1.

=⇒ exp
(

f (z)
)= z.

(Refer Slide Time: 26:47)

Hence f is a branch of the logarithm onΩ.
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EXAMPLE 1. Let Ω = C \ {x ∈ R : x ≤ 0}. Any point of Ω can be connected to 1 be a

straight line inΩ. If γ is a closed curve inΩ, then

H(s, t ) = (1− s)γ(t )+ s

is a homotopy of closed curves inΩ from γ to the constant curve γ1. HenceΩ is simply

connected.

Therefore, there exists a holomorphic function f :C\{x ≤ 0} −→C such that exp
(

f (z)
)=

z.

Suppose f and g are two branches of the logarithm onΩwhich are continuous func-

tions. We know that exp
(

f (z)
)= exp

(
g (z)

)
for each z ∈Ω. That is, for each z ∈Ω, we have

exp
(

f (z)− g (z)
) = 1. Hence f (z) = g (z) = 2πi k for k ∈ Z. Since f and g are continuous

functions onΩ, we have
(

f − g
)

is continuous onΩ and hence
(

f − g
)

(Ω) is connected.

Note that the only connected subsets of {2πi k : k ∈Z} are singletons (Why?). Since the

image of f −g will be connected and are 2πi k for k ∈Z, we must have a fixed k0 ∈Z such

that (
f − g

)
(Ω) = 2πi k0.

That is,

f (z) = g (z)+2πi k0 for some fixed k0 ∈Z.

Recall that Arg(z) = θ, where θ ∈ (−π,π] and z = |z|e iθ.

DEFINITION 2 (Standard branch of Logarithm). LetΩ=C\ {x ∈R : x ≤ 0}. Define the

standard branch of the logarithm to be

Log(z) = ln |z|+ i Arg(z).

EXERCISE 2. Log(z) is continuous on C\ {x ∈R : x ≤ 0} and also exp
(
Log(z)

)= z.
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Hence Log(z) is a continuous branch of the logarithm onΩ.

Since there exists a holomorphic branch of the logarithm f onΩ, by the observation

made above, we have

Log(z) = f (z)+2πi k0 for some fixed k0 ∈Z.

Hence Log(z) is a holomorphic function.

Notice that C \ {x ∈ R : x ≤ 0} is just one example of the simply connected domain in

C∗ for which we have a holomorphic branch of the logarithm. We can get hold of another

examples of simple domains in C∗ that admits a continuous branch of the logarithm.

(Refer Slide Time: 40:28)

If Ω = D(1,1), then Ω is simply connected and contained in C∗. Hence in this do-

main also, we have a continuous branch of the logarithm and moreover, since D(1,1) is

contained in C \ {x ∈ R : x ≤ 0} as well, the restriction of the holomorphic branch of the

logarithm Log(z) to D(1,1) will again turn out to a holomorphic function on D(1,1).

If Ω= D(−2,1), thenΩ is a simply connected domain in C∗ and hence there exists a

holomorphic branch of the logarithm in Ω. However, the Log(z) (which can be defined

on C∗) is not even continuous inΩ as Log(z) is discontinuous on {x ∈R : x ≤ 0}∩Ω.

Thus the point here to notice is that, when we talk about the holomorphic branch of

the complex logarithm, it matters which domain we are considering.
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Recall that, given w ∈C∗, there exists n roots to the equation zn = w .

We would like to obtain a holomorphic branch of the nth root function. That is, we

want to address the question: does there exists a holomorphic function g :Ω−→C such

that
(
g (z)

)n = z for each z ∈Ω, whereΩ⊆C∗?

Let Ω be a simply connected domain. and let f be a holomorphic branch of the

logarithm onΩ. Define

g (z) = exp

(
f (z)

n

)
.

Being a composition of holomorphic functions onΩ, g is holomorphic onΩ. Also,(
g (z)

)n =
(
exp

(
f (z)

n

))n

= exp
(

f (z)
)= z

and this is precisely what we are trying to get hold off.

Hence, on simply connected domains, we have a holomorphic branch of nth root

function.


