Complex Analysis
Prof. Pranav Haridas
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Lecture No - 41
Branch of the Logarithm
When we proved the argument principle, we defined the notion of the log-derivative of a
holomorphic function f as the meromorphic function fTI We even checked that the log-
derivative satisfies some of the properties, which the complex logarithm is expected to
satisfy. We did all that without really defining what is meant by the complex logarithm in
the complex setting. We are familiar with the same notion in the real setting. However,

the notion has to be made precise in the complex setting.
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Recall that the logarithm In : (0,00) — R to be the function which inverts the ex-
ponential function on R. This definition cannot be generalized to define the complex
logarithm. Notice that the exponential function exp : C — C\ {0} satisfy the property
that

e“=e" < z=w+2nikforke?Z.

Thus exp is not injective.

For ze C* =C\ {0}, let us denote log(z) to be the set

log(z) = {w e C:exp(w) = z}.
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If w=1In|z| +i6 for 0 € arg(z) = {0 e R: z=|z|e!’}, then e¥ = |z|e! = z.

That is an alternate way of looking at it, but this is not something which we will be
satisfied with. We would like to really get hold of an ‘honest’ function f, which inverts
the exponential function. Let us try to define one such function and in order to do that
let us revisit from the real analysis setting; what we did, when we encountered real val-
ued functions?

Let us consider a function on R which is not injective. One such functionis f: R —
[0,00) given by f(x) = x%. Given x > 0, there exist two real numbers /X, —/x such that
(vx)? = (-v/x)® = x. By picking one of the square roots, we worked freely with the square
root.

By a branch of the square root, we mean a function g : [0,00) — R such that
(g0)* = x.

Can we have a g which is continuous?

Define g(x) = v/x, where /x > 0, then g is continuous branch of the square root. We
could also define other branches as well. For example, define g(x) = —v/x where /x> 0,
then also g is continuous branch of the square root.

Observe that, we could also define a branch of the square root which is not continu-
ous. For example, define,

VX 0<x<10

g(x):=
—V/x x>10

then g will be a branch of the square root, but g is not a continuous function as g has a

discontinuity at x = 10.

DEFINITION 1 (Branch of the logarithm). Let Q be an open connected subset of C*.

By a branch of the logarithm on Q, we mean a function f: Q2 — C such that

exp(f(z))=z foreachzeQ
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Let Q=C\ {0} =C*. Suppose f is a branch of logarithm on C*. Thatis f:C* — C be
a function such that exp (f(2)) = z.
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One can ask this question: Can f be a holomorphic function?
If f were holomorphic, then by chain rule applied to the equation exp (f(z)) = z, we

have
d
1= P (exp(f(2))) = f'(@exp(f(2) = zf'(2)
1
/ —_ —
= f(2) = et
Let y(t) = e'! for t € [0,27] in C*. Since f is the anti-derivative of % in C*, by the funda-

mental theorem of calculus, we have

ff'(z)dz =0.
Y

But,
d
ff’(z)dz:f 8% _oni#o.
Y Yy 2
Hence if we have a holomorphic branch of the logarithm on C*, then we have a contra-
diction.
Let Q be an open connected subset of C*. Further let Q be simply connected. Con-
sider the function % which is holomorphic on Q. Let y be any simply closed curve. By

Cauchy’s theorem,
dz

Yy %

0.
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By the fundamental theorem of calculus, there exists a function f : Q — C such that
flz)=1.
Let f be an anti-derivative such that given zy and wy with e* = wy, we have f(wg) =

zp. Since f is holomorphic on Q, by chain rule

d o _exp(f(2))
= (exp(f(2))) = f'(2)exp(f(2) = —

Now, by the quotient rule

d (exp (f(Z))) _exp (f(@) —exp(f(2)

p 5 =0 VzeQ.
z z z

_ oo(f)

V4

= C, a constant.

For z = wy, we have
exp (f (wo)) = exp (z0) = wp.

Hence

exp (f (wp))

Wo

=C=1.

= exp(f(2) ==
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Hence f is a branch of the logarithm on Q.
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EXAMPLE 1. Let Q =C\{x € R: x < 0}. Any point of Q can be connected to 1 be a

straight line in Q. If y is a closed curve in Q, then
H(s,t) =1 -9y +s

is a homotopy of closed curves in Q from y to the constant curve y;. Hence Q is simply
connected.

Therefore, there exists a holomorphic function f : C\{x < 0} — C such thatexp (f(z)) =

Suppose f and g are two branches of the logarithm on Q which are continuous func-
tions. We know that exp (f(z)) = exp (g(2)) for each z € Q. That s, for each z € Q, we have
exp (f(z) — g(z)) = 1. Hence f(z) = g(z) =2mik for k € Z. Since f and g are continuous
functions on Q, we have (f — g) is continuous on Q and hence (f — g) (Q) is connected.
Note that the only connected subsets of {27ik : k € Z} are singletons (Why?). Since the
image of f — g will be connected and are 27ik for k € Z, we must have a fixed ky € Z such

that
(f—g) Q) =2miky.
That is,

f(z)=g(z)+2miky for some fixed ky € Z.

Recall that Arg(z) = 0, where 0 € (-, 7] and z = |z|e™®.

DEFINITION 2 (Standard branch of Logarithm). Let Q = C\ {x € R: x < 0}. Define the

standard branch of the logarithm to be
Log(z) =1In|z| + iArg(z).

EXERCISE 2. Log(z) is continuous on C\ {x € R: x < 0} and also exp (Log(z)) = z.



Hence Log(z) is a continuous branch of the logarithm on Q.
Since there exists a holomorphic branch of the logarithm f on Q, by the observation

made above, we have

Log(z) = f(2) +2miko for some fixed kj € Z.

Hence Log(z) is a holomorphic function.

Notice that C\ {x € R: x < 0} is just one example of the simply connected domain in
C* for which we have a holomorphic branch of the logarithm. We can get hold of another
examples of simple domains in C* that admits a continuous branch of the logarithm.
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If Q = D(1,1), then Q is simply connected and contained in C*. Hence in this do-
main also, we have a continuous branch of the logarithm and moreover, since D(1,1) is
contained in C\ {x € R: x < 0} as well, the restriction of the holomorphic branch of the
logarithm Log(z) to D(1,1) will again turn out to a holomorphic function on D(1,1).

If Q = D(-2,1), then Q is a simply connected domain in C* and hence there exists a
holomorphic branch of the logarithm in Q2. However, the Log(z) (which can be defined
on C*) is not even continuous in Q as Log(z) is discontinuous on {x e R: x < 0} N Q.

Thus the point here to notice is that, when we talk about the holomorphic branch of

the complex logarithm, it matters which domain we are considering.



Recall that, given w € C*, there exists n roots to the equation z”" = w.

We would like to obtain a holomorphic branch of the n'” root function. That is, we
want to address the question: does there exists a holomorphic function g : Q — C such
that (g(2))" = z for each z € Q, where Q € C*?

Let Q be a simply connected domain. and let f be a holomorphic branch of the
logarithm on Q. Define

n

g(z) =exp (f(z) ) .

Being a composition of holomorphic functions on Q, g is holomorphic on Q. Also,

"= o[22 =exptr) -

and this is precisely what we are trying to get hold off.
Hence, on simply connected domains, we have a holomorphic branch of n'" root

function.



