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Let (X ,d) be a metric space. Let U be a collection of open sets in X . We say that U

is an open cover of a subset K ⊆ X if K ⊆⋃
{U : U ∈U }.

(Refer Slide Time: 02:19)

We say that a subset K ⊆ X is compact if for every open cover U of K , there exists

finitely many elements U1,U2, . . .Un ∈U such that K ⊆
n⋃

k=1
Uk .

(Refer Slide Time: 03:33)

1



2

Example:

• A finite subset of a metric space is compact.

• ∅ is compact.

• Let {xn} be a sequence of points converging to x0. Then A = {xn : n ∈N∪ {0}} is

compact in X .
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PROPOSITION 1. In a metric space, a compact set is closed.

PROOF. Let K ⊆ X be compact and x0 ∈ X \ K . Define Bn := {x ∈ X : d(x, x0) ≤ 1
n }. Let

U = {Un}n∈N, where Un = X \ Bn .

Then X \ (
∞⋃

n=1
Un) =

∞⋂
n=1

(X \Un) =
∞⋂

n=1
Bn = {x0}. Since we choose x0 not in K =⇒ K ⊆

∞⋃
n=1

Un . Hence U is an open cover of K . Since K is compact, there exists a finite subcover

of U . i.e, ∃n0 ∈N such that K ⊆U1 ∪U2 ∪·· ·∪Un0 .

(Refer Slide Time: 08:02)

Let m > n0, now reader can verify that B(x0, 1
m )∩ (

n0⋃
n=1

Un) =∅ =⇒ B(x0, 1
m ) ⊂ X \ K .

Hence X \ K is open =⇒ K is closed.

�

EXERCISE 2. A closed subset of a compact set is closed.
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Let X be a metric space. We say that X is limit point compact if every infinite subset

of X has a limit point.

PROPOSITION 3. Let X be a compact metric space, then X is limit point compact.

PROOF. Let A be an infinite subset of X . Suppose A does not have a limit point, then

A is closed in X =⇒ X \ A is open.

Refer Slide Time: 12:52

Given x ∈ A, then x is not a limit point of A. Hence ∃ a neighborhood Ux of x such

that A∩Ux = {x}. Define U := {Ux : x ∈ A}
⋃

{X \ A}. Then U is an open cover of X . Since

X is compact ∃x1, x2, . . . xn ∈ A such that X =Ux1 ∪Ux2 ∪·· ·∪Uxn ∪ (X \ A).

(Refer Slide Time: 16:04)
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But A∩Uxi = {xi } and A∩ (X \ A) =∅ =⇒ A is finite which is a contradiction. Hence

∃ a limit point of A. �

(Refer Slide Time: 17:15)

We say that metric space is sequentially compact if every sequence in the metric

space has that convergent subsequence.

PROPOSITION 4. Let X be a metric space. If X is limit point compact, then X is se-

quentially compact.

PROOF. Let {xn} be a sequence in X and A = {xn : n ∈N}. Then A can either be finite

or infinite.
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If A is finite, ∃nk such that nk < nk+1,k ∈ N and xnk = x0 for some x0 ∈ X which

repeats infinitely many times in the sequence. Then lim
k→∞

xnk = x0 Hence {xn} has a con-

vergent subsequence. If A is infinite, then A has a limit point x0, since X is limit point

compact.

Claim: There exists a subsequence of {xn} converging to x0.

Let n1 ∈N be such that xn1 ∈ B(x0,1). Let n2 > n1 be such that xn2 ∈ B(x0, 1
2 ).

(Refer Slide Time: 21:58)
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Reader should verify the existence of such an n2.(Hint: If there does not exists such an

n2 such that n2 > n1 and xn2 ∈ B(x0, 1
2 ). Then d(xk , x0) > 1

2 ∀k > n1. Let δ=min{d(x0, x1),

d(x0, x2), . . .d(x0, xn1 ), 1
2 }. Then consider B(x0,δ).)

Construct inductively xnk such that nk > nk−1 and xnk ∈ B(x0, 1
k ). Then {xnk } con-

verges to x0. Hence {xnk } is a convergent subsequence of {xn}. Hence X is sequentially

compact.

�

Now we have proved that if a metric space is compact then it is limit point compact.

If a metric space is limit point compact then it is sequentially compact. We can complete

’the cycle’ by proving that any sequentially compact metric space is a compact metric

space. For that we need to use a theorem called Lebesgue number lemma.
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LEMMA 5 (Lebesgue number lemma). Let X be sequentially compact and U be an

open cover of X . Then ∃δ> 0 such that for x ∈ X , ∃U ∈U such that B(x,δ) ⊂U .

PROOF. Suppose there does not exists such a δ > 0. Then for every n ∈ N, ∃xn ∈ X

such that B(xn , 1
n ) is not contained in any element of U . Since X is sequentially com-

pact, ∃ a subsequence {xnk } such that xnk −→ x0, x0 ∈ X . U is an open cover of X , x0 ∈
X =⇒ ∃ε > 0 such that B(xo ,ε) ⊂U for some U ∈ U . Let nk be large enough such that

1
nk

< ε
2 and d(xnk , xo) < ε

2 .

Claim: B(xnk , 1
nk

) ⊂U .
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Let y ∈ B(xnk , 1
nk

), then d(x0, y) ≤ d(x0, xnk )+d(xnk , y) < ε =⇒ y ∈ B(x0,ε) ⊂U =⇒
B(xnk , 1

nk
) ⊂U .

(Refer Slide Time: 31:22)

This is a contradiction to the assumption that B(xn , 1
n ) is not contained in any ele-

ment of U . Hence ∃δ> 0 satisfying the condition in the lemma. �

THEOREM 6. Let X be sequentially compact. Then X is compact metric space.

PROOF. Claim: Given ε> 0,∃ finitely many points x1, x2, . . . xn such that X = B(x1,ε)∪
B(x2,ε)∪·· ·∪B(xn ,ε).

Suppose ε > 0 is such that there does not exists finitely many points x1, x2, . . . xn

such that X = B(x1,ε)∪B(x2,ε)∪·· ·∪B(xn ,ε). Pick x1 ∈ X . Inductively xn+1 6∈ B(x1,ε)∪
B(x2,ε)∪·· ·∪B(xn ,ε). Consider the sequence {xn}. But X is sequentially compact, hence

∃ a converging subsequence of {xn}. But from our assumption d(x j , xi ) > ε and hence

no subsequence will be Cauchy, which is a contradiction.

Hence ∃finitely many points x1, x2, . . . xn such that X = B(x1,ε)∪B(x2,ε)∪·· ·∪B(xn ,ε)(This

particular notion sometimes also called as total boundedness).

(Refer Slide Time: 38:49)
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Let U be an open cover of X . Then by using Lebesgue number lemma, ∃δ> 0 such

that given x ∈ X ,B(x,δ) ⊂Ux for some Ux ∈U . By the above claim ∃ finitely many points

such that X = B(x1,δ)∪B(x2,δ)∪·· ·∪B(xn ,δ) =⇒ X ⊂Ux1 ∪Ux2 ∪·· ·∪Uxn . Hence X is

compact. �

With this, we complete our circle of ideas. From now on, because our complex plane

is metric space with respect to the metric we have define, these notions coincide in our

complex plane and we will freely be using these notions interchangeable.


