Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture -4

Topology on the Complex Plane(Continued)
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Let (X, d) be a metric space. Let % be a collection of open sets in X. We say that %
is an open cover of a subset K <€ X if K < U{U : U € %}.
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We say that a subset K < X is compact if for every open cover % of K, there exists
n
finitely many elements Uy, U, ... U, € % such that K< J Uyk.

k=1
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« A finite subset of a metric space is compact.
e Jis compact.
 Let {x,} be a sequence of points converging to xyp. Then A = {x, : n e NU{0}} is

compact in X.
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PROPOSITION 1. In a metric space, a compact set is closed.

PROOE Let K € X be compact and xy € X \ K. Define B, := {x € X : d(x, xg) < %}. Let
U = {Up}nen, Where U,, = X\ By,.
(o0 o0 (0 0]
Then X\ (U U,) = N (X\U;) = N B, ={xp}. Since we choose xygnotin K — K¢
n=1 n=1

n=1

[e.0]
U U,. Hence % is an open cover of K. Since K is compact, there exists a finite subcover
n=1

of %.i.e,dng e Nsuchthat Kc Uy u Uz U--- U Upy,.
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Let m > ngy, now reader can verify that B(xy, %) N(U U,) =9 = B(xy, %) c X\K.
n=1
Hence X \ K is open = K is closed.

O

EXERCISE 2. A closed subset of a compact set is closed.
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Let X be a metric space. We say that X is limit point compact if every infinite subset

of X has a limit point.
PROPOSITION 3. Let X be a compact metric space, then X is limit point compact.

PROOE. Let A be an infinite subset of X. Suppose A does not have a limit point, then
Aisclosedin X = X\ Ais open.
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Given x € A, then x is not a limit point of A. Hence 3 a neighborhood U, of x such
that An Uy = {x}. Define % := {U, : x € A}JU{X \ A}. Then % is an open cover of X. Since
X is compact 3xi, X2,...x, € Asuch that X = Uy, UUy, U---U Uy, U(X\ A).
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But AnUy, = {x;} and An(X\ A) =& = Ais finite which is a contradiction. Hence

3 a limit point of A. 0
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We say that metric space is sequentially compact if every sequence in the metric

space has that convergent subsequence.

PROPOSITION 4. Let X be a metric space. If X is limit point compact, then X is se-

quentially compact.

PROOE. Let {x,} be a sequence in X and A = {x,,: n € N}. Then A can either be finite
or infinite.

(Refer Slide Time: 19:48)



91’) A o 6‘”"'}&' , a ﬂk i ke N &t THEE A,

24 i< L Y
6—;», Lome A, € X

L=

ﬂ)|p‘)’:lﬂ'f. A l'"f—fnifi , thew A hat o Lwmit H‘.'J(._
let wny el be ¢t %y e B(x%, 1)

Ly wa>n, be st Xy, € B(%, ).
e

If A is finite, 3ny such that ni < ng41,k € N and x,, = xo for some xo € X which
repeats infinitely many times in the sequence. Then klim Xn, = Xo Hence {x,,} has a con-
—00
vergent subsequence. If A is infinite, then A has a limit point xp, since X is limit point
compact.
Claim: There exists a subsequence of {x,,} converging to xo.
Let n; € N be such that x,, € B(xo,1). Let np > n; be such that x,, € B(xo, %).
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Reader should verify the existence of such an n,.(Hint: If there does not exists such an
ny such that ny > ny and x,, € B(xo, %). Then d(x, xg) > % Yk > n;. Let 6 = min{d(xy, x1),
d(xo,xg),...d(xo,xnl),%}. Then consider B(xgy,0).)

Construct inductively x,, such that ny > ni_; and x,, € B(xo, %). Then {x,,} con-
verges to xo. Hence {x,,} is a convergent subsequence of {x,}. Hence X is sequentially

compact.
U

Now we have proved that if a metric space is compact then it is limit point compact.
If a metric space is limit point compact then it is sequentially compact. We can complete
'the cycle’ by proving that any sequentially compact metric space is a compact metric
space. For that we need to use a theorem called Lebesgue number lemma.
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LEMMA 5 (Lebesgue number lemma). Let X be sequentially compact and % be an

open cover of X. Then 36 > 0 such that for x € X, 3U € % such that B(x,6) c U.

PROOE. Suppose there does not exists such a § > 0. Then for every n € N, 3x, € X
such that B(x,, %) is not contained in any element of %. Since X is sequentially com-
pact, 3 a subsequence {x,,} such that x,, — xo,xo € X. % is an open cover of X, xj €
X = Je > 0 such that B(x,,€) c U for some U € %. Let ny be large enough such that
nik < £ and d(xp,, Xo) < §.

Claim: B(xy,, nik) cU.



Let y € B(xy,, nik), then d(xo, y) < d(xo,Xp,) + d(xy,y) <€ = y€ B(xp,6) cU =
B(xny, 7)< U.
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This is a contradiction to the assumption that B(x,, %) is not contained in any ele-

ment of %. Hence 36 > 0 satisfying the condition in the lemma. U
THEOREM 6. Let X be sequentially compact. Then X is compact metric space.

PROOE. Claim: Given € > 0,3 finitely many points xj, xp, ... x, such that X = B(x;,€)u
B(xy,e)U---UB(xy,€).

Suppose € > 0 is such that there does not exists finitely many points xj, x2,...x,
such that X = B(x1,€) U B(x2,€) U---U B(xp,€). Pick x; € X. Inductively x,+ € B(x1,€) U
B(xz,€)U---UB(xy,,€). Consider the sequence {x,}. But X is sequentially compact, hence
3 a converging subsequence of {x,}. But from our assumption d(xj, x;) > € and hence
no subsequence will be Cauchy, which is a contradiction.

Hence 3 finitely many points x1, X2, ... X, such that X = B(x;,€)UB(x2,€)U---UB(x,,€)(This
particular notion sometimes also called as total boundedness).
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Let % be an open cover of X. Then by using Lebesgue number lemma, 36 > 0 such
that given x € X, B(x,8) c Uy for some U, € % . By the above claim 3 finitely many points
such that X = B(x;,6) UB(x2,0) U---UB(x,,0) = X c Uy, UUy, U---UU,,. Hence X is

compact. U

With this, we complete our circle of ideas. From now on, because our complex plane
is metric space with respect to the metric we have define, these notions coincide in our

complex plane and we will freely be using these notions interchangeable.



