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Argument Principle

We have not defined what is meant by the logarithm of a complex number however if we

have a logarithm of complex number say log z, then it is desirable that the derivative of

log z is equal to 1
z and by the chain rule we would like to have the derivative of log

(
f (z)

)
to be f ′(z)

f (z) .

DEFINITION 1 (Logarithmic Derivative). Let f :Ω −→ C be a holomorphic function.

We will define the log-derivative of f to be the meromorphic function
f ′(z)

f (z)
.
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EXAMPLE 1.

(1) Let f :Ω −→ C and g :Ω −→ C be any two holomorphic functions on Ω. Then

the log-derivative of the product f g will be,(
f g

)′ (z)(
f g

)
(z)

= f ′(z)g (z)

f (z)g (z)
+ f (z)g ′(z)

f (z)g (z)
= f ′(z)

f (z)
+ g ′(z)

g (z)
.

If g is non-zero on Ω, then we can talk about the log-derivative of the quotient
f
g and which will be,(

f
g

)′
(z)(

f
g

)
(z)

= f ′(z)g (z)− f (z)g ′(z)

f (z)g (z)
= f ′(z)

f (z)
− g ′(z)

g (z)
.

(2) Consider p(z) = a(z − z1)d1 . . . (z − zn)dn and q(z) = b(z − w1)e1 . . . (z − wm)em ,

where zi ’s are distinct and w j ’s are distinct. Let R(z) = p(z)
q(z) . Then

R ′(z)

R(z)
= d1

(z − z1)
+ d2

(z − z2)
+·· ·+ dn

(z − zn)
− e1

(z −w1)
− e2

(z −w2)
−·· ·− em

(z −wm)
.

(3) Let f :Ω\ S −→C be a holomorphic function.

• If z0 ∈Ω\S is such that f (z0) ̸= 0, then f ′
f is holomorphic in a neighborhood

of z0.

• If z0 ∈ Ω \ S and f (z0) = 0 with order m, then f (z) = (z − z0)m g (z) where

g (z0) ̸= 0 and the log-derivative of f will be

f ′(z)

f (z)
= m(z − z0)m−1g (z)

(z − z0)m g (z)
+ (z − z0)m g ′(z)

(z − z0)m g (z)

= m

(z − z0)
+ g ′(z)

g (z)
.

Note that g ′
g is holomorphic on z0.

• If z0 ∈ S and z0 is a removable singularity of f , then f ′
f behaves as above.

• If z0 ∈ S and z0 is a pole of order m, then

f (z) = g (z)

(z − z0)m
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where g (z) ̸= 0 in a neighborhood of z0 and we have

f ′(z)

f (z)
=

g ′(z)
(z−z0)m − mg (z)

(z−z0)m+1

g (z)
(z−z0)m

= g ′(z)

g (z)
− m

(z − z0)
.

THEOREM 2 (Argument Principle). LetΩ be an open set in C and f be a meromorphic

function defined onΩ such that f has zeroes of order d1, . . . ,dn at z1, . . . , zn respectively, af-

ter removing the removable singularities, and f has poles of order e1, . . . ,em at w1, . . . , wm

respectively. Let γ be a closed curve which is null-homotopic in Ω such that zeroes and

poles don’t lie on γ.Then

1

2πi

∫
γ

f ′(z)

f (z)
d z =

n∑
i=1

di Wγ(zi )−
m∑

j=1
ei Wγ(w j )

where Wγ is the winding number.

(Refer Slide Time: 20:20)

PROOF. We have

f (z) = (z − z1)d1 . . . (z − zn)dn

(z −w1)e1 . . . (z −wm)em
g (z)

where g has neither zeros nor poles inΩ.



4

Then,

1

2πi

∫
γ

f ′(z)

f (z)
d z = 1

2πi

∫
γ

(
d1

(z − z1)
+·· ·+ dn

(z − zn)
− e1

(z −w1)
−−·· ·− em

(z −wm)

)
d z+

1

2πi

∫
γ

g ′(z)

g (z)
d z

=
n∑

i=1
di Wγ(zi )−

m∑
j=1

e j Wγ(w j ).

□

EXAMPLE 3. Let γ be a contour in Ω and f be a holomorphic function on Ω. Define

σ : [a,b] −→C given by σ(t ) = f ◦γ(t ). Then

1

2πi

∫
γ

f ′(z)

f (z)
d z = 1

2πi

∫ b

a

f ′ (γ(t )
)
γ′(t )d t

f
(
γ(t )

)
= 1

2πi

∫ b

a

(
f ◦γ)′ (t )d t(

f ◦γ)
(t )

= 1

2πi

∫
σ

d z

z

=Wσ(0).

Suppose z1, z2, . . . , zn be the zeroes of f on Ω. If γ is a null-homotopic simple closed

curve which does not pass through zi ’s, then
1

2πi

∫
γ

f ′
f gives the number of zeroes of f

counting multiplicities in H([0,1]× [a,b]), where H is the homotopy between γ and the

constant curve.

(Refer Slide Time: 27:40)
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THEOREM 4 (Stability of zeroes). Let Ω be an open set and γ0 : [a,b] −→ C be a null-

homotopic closed curve in Ω. Suppose H : [0,1]× [a,b] −→ Ω be a homotopy of closed

curves in Ω from γ0 to γ1. Suppose f0 and f1 are holomorphic functions on Ω such that

there exists a continuous function F : [0,1]×Ω−→C such that F (0, z) = f0(z) and F1(1, z) =
f1(z). Further, for each s ∈ [0,1], F (s, H(s, t )) ̸= 0 (i.e., F (s, .) does not vanish on H(s, t ) =
γs(t )). Then the number of zeroes of f0 in the interior of γ0 counting multiplicities is the

same as the number of zeroes of f1 in the interior of γ1.

(Refer Slide Time: 32:23)



6

PROOF. The number of zeroes with counting multiplicities of f0 in the interior of γ0

is given by

(1)
1

2πi

∫
γ0

f ′
0(z)

f0(z)
d z =Wσ0 (0)

where σ0 = f0 ◦γ0.

Similarly, the number of zeroes with multiplicities of f1 in the interior of γ1 is given

by

(2)
1

2πi

∫
γ1

f ′
1(z)

f1(z)
d z =Wσ1 (0)

where σ1 = f1 ◦γ1.

Define G : [0,1]×[a,b] −→C\{0} given by G(s, t ) := F (s, H(s, t )). Then G is a homotopy

of closed curves in C \ {0} from σ0 to σ1 which gives us Wσ0 (0) = Wσ1 (0) and hence the

result. □

EXAMPLE 5. Let f (z) = z2 and γ(t ) = e i t for t ∈ [0,2π]. Then z = 0 is the only zero of f

and the number of zeroes of f , counting multiplicities, is 2. Now consider fϵ(z) = z2 +ϵ.
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Then the zeroes of f are z = i
p
ϵ and z =−i

p
ϵ. Note that the homotopy here will be the

constant homotopy, H(s, t ) = γ(t ).

THEOREM 6 (Rouche’s Theorem). Let γ be a closed curve which is null-homotopic in

Ω. Suppose f and g are holomorphic inΩ and |g (z)| < | f (z)| on γ. Then f and f +g have

the same number of zeroes counting multiplicities on the interior of Γ([0,1]×[a,b]) where

Γ is the null-homotopy from γ to a constant path.

PROOF. Define F (s, t ) = f (t )+ sg (t ). Also define H(s, t ) = γ(t ). By the stability of

zeroes, since F (s, H(s, t )) ̸= 0, we have the number of zeroes of f and f +g in the interior

of γ are equal upto multiplicity. □


