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Argument Principle

We have not defined what is meant by the logarithm of a complex number however if we
have a logarithm of complex number say log z, then it is desirable that the derivative of

logz is equal to % and by the chain rule we would like to have the derivative of log(f (z))

f'(2)

to be T

DEFINITION 1 (Logarithmic Derivative). Let f : Q — C be a holomorphic function.
!
(2)

flz)

We will define the log-derivative of f to be the meromorphic function
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EXAMPLE 1.

(1) Let f:Q — C and g : Q — C be any two holomorphic functions on Q. Then
the log-derivative of the product f g will be,

(fe) @ _f@sa)  f@g'@) _ '@ g'@
(fg)@ flagla) flagla fla g@’

If g is non-zero on (2, then we can talk about the log-derivative of the quotient

£ and which will be,
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(2) Consider p(z) = a(z — )M .. . (z- zn)d" and q(z) = b(z — w1)?...(z — wy)™,

where z;’s are distinct and w;’s are distinct. Let R(z) = %. Then

R/(Z) _ dl dg dn €1 (%) em

= + 4+t - - - —_— .
R(z) (z-21) (2-22) (z2-2zp) (z—w1) (z—w2) (z—wm)
(3) Let f:Q\S— C be a holomorphic function.
o If zp € Q\Sissuch that f(z) # 0, then fT/ is holomorphic in a neighborhood
of Z0.
e If zo € Q\ S and f(zp) = 0 with order m, then f(z) = (z— zy)"' g(z) where
g(zp) # 0 and the log-derivative of f will be
f'@) _mz-20""ga)  (2-2)"g'(2)
f(2) (z—20)"g(2) (z—20)"g(2)
!/
-_m 8 (Z).
(z—z0) g2

!
Note that % is holomorphic on zj.

e If zy € S and zj is a removable singularity of f, then fT/ behaves as above.

e If zy € S and zj is a pole of order m, then

floy= 82

" (z—z)™



where g(z) # 0 in a neighborhood of z, and we have
g'(2) mg(z)
f/(Z) _ (z—20)™ ~ (z—zg)M+1 _ g'(Z) _ m
f(2) {C) g(z) (z—zp)

(z2—zp)™

THEOREM 2 (Argument Principle). LetQ be an open set inC and f be a meromorphic
function defined on Q) such that f has zeroes of order d,, ..., d, at zi, ..., z, respectively, af-
ter removing the removable singularities, and f has poles of order ey, ..., e, at wy,..., Wy

respectively. Lety be a closed curve which is null-homotopic in Q) such that zeroes and
poles don'’t lie ony.Then

1 f’(z) 3 n m
2ni ) T2 dz=) diWy(z) -} eiWy(w))

i=1 j=1

where Wy, is the winding number.
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PROOFE. We have
Fl2) = (z— zl)d1 o (z— zn)d"
(z—wqy)e...(z— wp)em
where g has neither zeros nor poles in Q.

g(2)



Then,

1_ f(Z)dz: 1]( dl 4t dn _ &1 e—m dz+
2ni Jy f(2) 27mi Jy\(z2— z1) (z—zy) (z—wq) (z—wim)

1 [gw

2ni Jy g(z)

n m
=) diWy(z)) - )_ ejWy(w)).
i=1 j=1

EXAMPLE 3. Lety be a contour in Q and f be a holomorphic function on Q. Define

o:la,b] — Cgiven by o(f) = foy(t). Then

1 ff’(z) 1 fbf’(}’(l‘)))"(t)dt
— dz = -
2ni Jy f(2) 2mi Ja flr®)
_ 1 fb(foy)’tndt
2niJa  (foy)(®)
1 dz

2ni Jo z

= W, (0).

Suppose zi, 22,...,z, be the zeroes of f on Q. If y is a null-homotopic simple closed
1 /

curve which does not pass through z;’s, then ey foT gives the number of zeroes of f
mi

counting multiplicities in H([0, 1] x [a, b]), where H is the homotopy between y and the

constant curve.
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THEOREM 4 (Stability of zeroes). Let Q) be an open set and yy : [a,b] — C be a null-
homotopic closed curve in Q. Suppose H : [0,1] x [a,b] — Q be a homotopy of closed
curves in Q) from yy to y1. Suppose fy and f, are holomorphic functions on Q such that
there exists a continuous function F : [0,1] xQ — C such that F(0, z) = fy(z) and F,(1,z) =
f1(2). Further, for each s € [0,1], F(s, H(s,t)) # 0 (i.e., F(s,.) does not vanish on H(s,t) =
Ys(2)). Then the number of zeroes of fy in the interior of Yo counting multiplicities is the

same as the number of zeroes of fi in the interior of y;.
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PrROOF. The number of zeroes with counting multiplicities of f; in the interior of y
is given by

1 [ L@

1
(1) 21 Jyy fo(2)

dz = W,,(0)

where gy = fyo Y.
Similarly, the number of zeroes with multiplicities of f; in the interior of y; is given
by

1 [ i)
2) %fﬂ " dz=Wg,(0)

where o] = fioy;.
Define G: [0, 1] x[a, b] — C\{0} given by G(s, t) := F(s, H(s, t)). Then G is a homotopy
of closed curves in C\ {0} from o to o1 which gives us W;,(0) = Wy, (0) and hence the

result. ]

EXAMPLE 5. Let f(z) = z% and y(t) = €' for ¢ € [0,27]. Then z = 0 is the only zero of f

and the number of zeroes of f, counting multiplicities, is 2. Now consider f;(z) = 2% +e.
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Then the zeroes of f are z = iy/e and z = —i+/e. Note that the homotopy here will be the

constant homotopy, H(s, t) = y().

THEOREM 6 (Rouche’s Theorem). Lety be a closed curve which is null-homotopic in
Q. Suppose f and g are holomorphicinQ and |g(z)| < |f(z)| ony. Then f and f + g have
the same number of zeroes counting multiplicities on the interior of T'((0, 1] x [a, b]) where

[ is the null-homotopy fromy to a constant path.

PROOE. Define F(s,t) = f(t) + sg(t). Also define H(s,t) = y(t). By the stability of
zeroes, since F(s, H(s, 1)) # 0, we have the number of zeroes of f and f + g in the interior

of y are equal upto multiplicity. 0



