Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 39 Argument Principle

We have not defined what is meant by the logarithm of a complex number however if we have a logarithm of complex number say log *z*, then it is desirable that the derivative of log *z* is equal to $\frac{1}{z}$ and by the chain rule we would like to have the derivative of log(f(z)) to be $\frac{f'(z)}{f(z)}$.

DEFINITION 1 (Logarithmic Derivative). Let $f : \Omega \longrightarrow \mathbb{C}$ be a holomorphic function. We will define the log-derivative of f to be the meromorphic function $\frac{f'(z)}{f(z)}$.

For $j: \Omega \rightarrow \mathbb{C}$ be a hul. *function* We will denote by <u>log-denirative of f</u> the merromorphic *function* $\frac{1'(2)}{3(2)}$ *Geo*

(Refer Slide Time: 01:40)

EXAMPLE 1.

(1) Let $f : \Omega \longrightarrow \mathbb{C}$ and $g : \Omega \longrightarrow \mathbb{C}$ be any two holomorphic functions on Ω . Then the log-derivative of the product fg will be,

$$\frac{(fg)'(z)}{(fg)(z)} = \frac{f'(z)g(z)}{f(z)g(z)} + \frac{f(z)g'(z)}{f(z)g(z)} = \frac{f'(z)}{f(z)} + \frac{g'(z)}{g(z)}.$$

If *g* is non-zero on Ω , then we can talk about the log-derivative of the quotient $\frac{f}{g}$ and which will be,

$$\frac{\left(\frac{f}{g}\right)'(z)}{\left(\frac{f}{g}\right)(z)} = \frac{f'(z)g(z) - f(z)g'(z)}{f(z)g(z)} = \frac{f'(z)}{f(z)} - \frac{g'(z)}{g(z)}$$

(2) Consider $p(z) = a(z-z_1)^{d_1} \dots (z-z_n)^{d_n}$ and $q(z) = b(z-w_1)^{e_1} \dots (z-w_m)^{e_m}$, where z_i 's are distinct and w_j 's are distinct. Let $R(z) = \frac{p(z)}{q(z)}$. Then

$$\frac{R'(z)}{R(z)} = \frac{d_1}{(z-z_1)} + \frac{d_2}{(z-z_2)} + \dots + \frac{d_n}{(z-z_n)} - \frac{e_1}{(z-w_1)} - \frac{e_2}{(z-w_2)} - \dots - \frac{e_m}{(z-w_m)}$$

(3) Let $f : \Omega \setminus S \longrightarrow \mathbb{C}$ be a holomorphic function.

- If $z_0 \in \Omega \setminus S$ is such that $f(z_0) \neq 0$, then $\frac{f'}{f}$ is holomorphic in a neighborhood of z_0 .
- If $z_0 \in \Omega \setminus S$ and $f(z_0) = 0$ with order *m*, then $f(z) = (z z_0)^m g(z)$ where $g(z_0) \neq 0$ and the log-derivative of *f* will be

$$\frac{f'(z)}{f(z)} = \frac{m(z-z_0)^{m-1}g(z)}{(z-z_0)^m g(z)} + \frac{(z-z_0)^m g'(z)}{(z-z_0)^m g(z)}$$
$$= \frac{m}{(z-z_0)} + \frac{g'(z)}{g(z)}.$$

Note that $\frac{g'}{g}$ is holomorphic on z_0 .

- If $z_0 \in S$ and z_0 is a removable singularity of f, then $\frac{f'}{f}$ behaves as above.
- If $z_0 \in S$ and z_0 is a pole of order *m*, then

$$f(z) = \frac{g(z)}{(z - z_0)^m}$$

where $g(z) \neq 0$ in a neighborhood of z_0 and we have

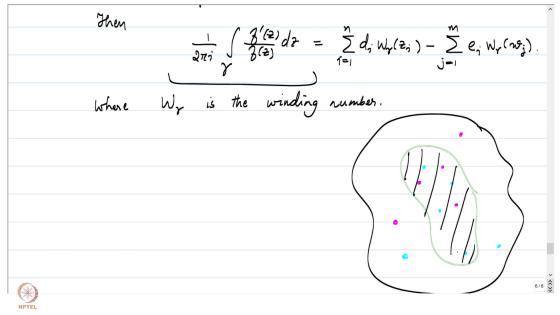
$$\frac{f'(z)}{f(z)} = \frac{\frac{g'(z)}{(z-z_0)^m} - \frac{mg(z)}{(z-z_0)^{m+1}}}{\frac{g(z)}{(z-z_0)^m}} = \frac{g'(z)}{g(z)} - \frac{m}{(z-z_0)}.$$

THEOREM 2 (Argument Principle). Let Ω be an open set in \mathbb{C} and f be a meromorphic function defined on Ω such that f has zeroes of order d_1, \ldots, d_n at z_1, \ldots, z_n respectively, after removing the removable singularities, and f has poles of order e_1, \ldots, e_m at w_1, \ldots, w_m respectively. Let γ be a closed curve which is null-homotopic in Ω such that zeroes and poles don't lie on γ . Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^n d_i W_{\gamma}(z_i) - \sum_{j=1}^m e_i W_{\gamma}(w_j)$$

where W_{γ} is the winding number.

(Refer Slide Time: 20:20)



PROOF. We have

$$f(z) = \frac{(z - z_1)^{d_1} \dots (z - z_n)^{d_n}}{(z - w_1)^{e_1} \dots (z - w_m)^{e_m}} g(z)$$

where g has neither zeros nor poles in Ω .

Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \left(\frac{d_1}{(z-z_1)} + \dots + \frac{d_n}{(z-z_n)} - \frac{e_1}{(z-w_1)} - \dots - \frac{e_m}{(z-w_m)} \right) dz + \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$
$$= \sum_{i=1}^n d_i W_{\gamma}(z_i) - \sum_{j=1}^m e_j W_{\gamma}(w_j).$$

EXAMPLE 3. Let γ be a contour in Ω and f be a holomorphic function on Ω . Define $\sigma : [a, b] \longrightarrow \mathbb{C}$ given by $\sigma(t) = f \circ \gamma(t)$. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{a}^{b} \frac{f'(\gamma(t))\gamma'(t)dt}{f(\gamma(t))}$$
$$= \frac{1}{2\pi i} \int_{a}^{b} \frac{(f \circ \gamma)'(t)dt}{(f \circ \gamma)(t)}$$
$$= \frac{1}{2\pi i} \int_{\sigma} \frac{dz}{z}$$
$$= W_{\sigma}(0).$$

Suppose $z_1, z_2, ..., z_n$ be the zeroes of f on Ω . If γ is a null-homotopic simple closed curve which does not pass through z_i 's, then $\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}$ gives the number of zeroes of f counting multiplicities in $H([0, 1] \times [a, b])$, where H is the homotopy between γ and the constant curve.

(Refer Slide Time: 27:40)

4

is hole on SZ with zeroes Z1,..., Zn Suppose r be a simple clused curve which does not pass 't through Z; 's They <u>i</u> J' gives the no. of zeroes of J counting 2ni J B multiplicities nis H([0,1] × [a,b]). MIM. 717 💲 ()

THEOREM 4 (Stability of zeroes). Let Ω be an open set and $\gamma_0 : [a, b] \longrightarrow \mathbb{C}$ be a nullhomotopic closed curve in Ω . Suppose $H : [0,1] \times [a,b] \longrightarrow \Omega$ be a homotopy of closed curves in Ω from γ_0 to γ_1 . Suppose f_0 and f_1 are holomorphic functions on Ω such that there exists a continuous function $F : [0,1] \times \Omega \longrightarrow \mathbb{C}$ such that $F(0,z) = f_0(z)$ and $F_1(1,z) =$ $f_1(z)$. Further, for each $s \in [0,1]$, $F(s, H(s,t)) \neq 0$ (i.e., F(s,.) does not vanish on H(s,t) = $\gamma_s(t)$). Then the number of zeroes of f_0 in the interior of γ_0 counting multiplicities is the same as the number of zeroes of f_1 in the interior of γ_1 .

(Refer Slide Time: 32:23)

Closed turve in S2. Suppose
$$H: [0,1] \times [a,b] \rightarrow S2$$
 be
a homotopic of closed turves in S2 from 76 to 7,
Suppose for 23, are holomorphic functions on S2 sit
 $\exists a \text{ cont. fn} \quad F: [0,1] \times S2 \longrightarrow C \qquad 8.t.$
 $F(0,2) = \frac{1}{2}(2) \ E \quad F(1,2) = \frac{1}{2}(2).$ Further
 $\forall s \in [0,1] \quad F(s,H(s,t)) \neq 0.$
 $Y_0(t)$
 $(F(s, \cdot)) \text{ does not vanish on } Y_s).$

PROOF. The number of zeroes with counting multiplicities of f_0 in the interior of γ_0 is given by

(1)
$$\frac{1}{2\pi i} \int_{\gamma_0} \frac{f_0'(z)}{f_0(z)} dz = W_{\sigma_0}(0)$$

where $\sigma_0 = f_0 \circ \gamma_0$.

Similarly, the number of zeroes with multiplicities of f_1 in the interior of γ_1 is given by

(2)
$$\frac{1}{2\pi i} \int_{\gamma_1} \frac{f_1'(z)}{f_1(z)} dz = W_{\sigma_1}(0)$$

where $\sigma_1 = f_1 \circ \gamma_1$.

Define $G : [0,1] \times [a,b] \longrightarrow \mathbb{C} \setminus \{0\}$ given by G(s,t) := F(s,H(s,t)). Then *G* is a homotopy of closed curves in $\mathbb{C} \setminus \{0\}$ from σ_0 to σ_1 which gives us $W_{\sigma_0}(0) = W_{\sigma_1}(0)$ and hence the result.

EXAMPLE 5. Let $f(z) = z^2$ and $\gamma(t) = e^{it}$ for $t \in [0, 2\pi]$. Then z = 0 is the only zero of f and the number of zeroes of f, counting multiplicities, is 2. Now consider $f_{\epsilon}(z) = z^2 + \epsilon$.

Then the zeroes of *f* are $z = i\sqrt{\epsilon}$ and $z = -i\sqrt{\epsilon}$. Note that the homotopy here will be the constant homotopy, $H(s, t) = \gamma(t)$.

THEOREM 6 (Rouche's Theorem). Let γ be a closed curve which is null-homotopic in Ω . Suppose f and g are holomorphic in Ω and |g(z)| < |f(z)| on γ . Then f and f + g have the same number of zeroes counting multiplicities on the interior of $\Gamma([0, 1] \times [a, b])$ where Γ is the null-homotopy from γ to a constant path.

PROOF. Define F(s, t) = f(t) + sg(t). Also define $H(s, t) = \gamma(t)$. By the stability of zeroes, since $F(s, H(s, t)) \neq 0$, we have the number of zeroes of f and f + g in the interior of γ are equal upto multiplicity.