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Residue Theorem

Let us explore the behavior of holomorphic functions around its isolated singularities a

bit further. Here we will state and prove the residue theorem. Residue theorem broadly

answers the following question: suppose you have a function f which is holomorphic

on an open setΩ\ S, where S is a discrete set of singularities of f , then what can we say

about
∫
γ f (z)d z, where γ is some closed curve inΩ\ S.

Suppose S was empty and γ was null homotopic, then this is just the Cauchy’s theo-

rem. The Cauchy’s theorem tells us that this integral is equal to 0. So in some sense, the

residual theorem can be thought of as a generalization of the Cauchy’s theorem. How-

ever the presence of these singularities makes the answer to this question a bit more

complicated.
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DEFINITION 1 (Residue of a function at a point z0). Let f :Ω \ S −→C be a holomor-

phic function whereΩ is an open set and S is a discrete subset ofΩ. For z0 ∈ S, let r > 0

be such that D(z0,r ) ⊆ Ω and D(z0,r )∩ S = {z0}. Then in D(z0,r ) \ {z0}, consider the

Laurent series expansion of f given by,

f (z) =
∞∑

n=−∞
an(z − z0)n .

We define the residue of f at z0 to be

Res
(

f , z0
)

:= a−1.

If z0 is a removable singularity, then a−n = 0 for every n ∈N. Hence Res
(

f , z0
)= 0.

If z0 is a pole of f of order 1, then

f (z) = g (z)

(z − z0)
in D(z0,r ) \ {z0}

where g ̸= 0. Thus, we have,

(z − z0) f (z) = g (z) = a0 +a1(z − z0)+a2(z − z0)2 . . .

=⇒ f (z) = a0

(z − z0)
+a1 +a2(z − z0)+ . . . .

Hence Res
(

f , z0
)= a0 = g (z0).

If z0 is a pole of order m, then

(z − z0)m f (z) = g (z)

where g (z) ̸= 0 on D(z0,r ) \ {z0}.
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Hence we have

f (z) = a0

(z − z0)m
+·· ·+ am−1

(z − z0)
+am +am+1(z − z0)+ . . .

where g (z) =
∞∑

n=0
an(z − z0)n . Therefore, Res

(
f , z0

)= am−1 = g (m−1)(z0)

(m −1)!
.

THEOREM 1 (Residue Theorem). LetΩ be an open subset of C and S be a finite subset

ofΩ. Suppose f :Ω\S −→C is a bounded function. Let γ be a null homotopic closed curve

inΩ. Then
1

2πi

∫
γ

f (z)d z =
k∑

j=1
Wγ

(
z j

)
Res

(
f , z j

)
where S = {z1, z2, . . . , zk } and Wγ is the winding number.

PROOF. Define

g (z) =
k∑

j=1

Res
(

f , z j
)

(z − z j )
.

Note that g is holomorphic onΩ\ S.

Fix z j and r > 0 be such that D(z j ,r ) ⊆Ω and D(z j ,r )∩S = {z j }. We have

g (z) = Res
(

f , z j
)

(z − z j )
+ g1(z)
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where g1 is the functions consists of the remaining terms of g . Then g1 is holomorphic

on D(z j ,r ). Note that Res
(
g , z j

)= Res
(

f , z j
)
.

(Refer Slide Time: 18:20)

Define F (z) = f (z)− g (z). If
∫
γF (z)d z = 0, then

∫
γ

(
f − g

)
(z)d z = 0

=⇒ 1

2πi

∫
γ

f (z)d z = 1

2πi

∫
γ

g (z)d z

= 1

2πi

∫
γ

k∑
j=1

Res
(

f , z j
)

(z − z j )
d z

=
k∑

j=1

Res
(

f , z j
)( 1

2πi

∫
γ

d z

(z − z j )

)

=
k∑

j=1
Wγ

(
z j

)
Res

(
f , z j

)
.

Hence the proof will be completed if we manage to show that
∫
γF (z)d z = 0.
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Let us try to figure out the Laurent series expansion of F . Since F (z) = f (z)− g (z),

then in D(z j ,r ) \ {z j },

f (z) =
∞∑

n=−∞
an(z − z j )n

and

g (z) = Res
(

f , z j
)

(z − z j )
+

∞∑
n=0

bn(z − z j )n = a−1

(z − z j )
+

∞∑
n=0

bn(z − z j )n

where the neighborhood D(z j ,r ) of z j is same as above.

On D(z j ,r ) \ {z0}, we have

F (z) =
∞∑

n=−∞
an(z − z j )n − a−1

(z − z j )
+

∞∑
n=0

bn(z − z j )n

=
∞∑

n=2
a−n(z − z j )−n +

∞∑
n=0

a′
n(z − z j )n .

Now, let us define a function G on D(z j ,r ) \ {z j } by

G(z) =
∞∑

n=2

a−n(z − z j )−n+1

−n +1
+

∞∑
n=0

a′
n(z − z j )n+1

(n +1)
.

Then, G ′(z) = F (z) and hence on D(z j ,r ) \ {z j }, F has an anti-derivative. Therefore, if C

is a closed curve in D(z j ,r ) \ {z0}, we have

(1)
∫

C
F (z)d z = 0.

If z ∈Ω \ S, then r1 > 0 be such that D(z,r1) ⊆Ω and D(z,r1)∩S =∅. Then by Cauchy’s

theorem, for any closed curve C1 in D(z0,r1),

(2)
∫

C1

F (z)d z = 0.

Let γ : [a,b] −→Ω\ S be null-homotopic inΩ. That is, there exists H : [0,1]× [a,b] −→Ω

such that γ0 = γ and γ1 = γz0 and such that γs is closed curve for every s ∈ [0,1], where

γz0 (t ) = z0 for each t ∈ [a,b].
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Since [0,1]× [a,b] is compact, so is H([0,1]× [a,b]) inΩ. Let

U′ := {D(z,rz) : z ∈ H([0,1]× [a,b]) \ S,D(z,rz) ⊆Ω and D(z,rz)∩S =∅}
⋃

{D(z j ,r j ) : 1 ≤ j ≤ k, z j ∈ H([0,1]× [a,b]),D(z j ,r j )∩S = {z j } and D(z j ,r j ) ⊆Ω}.

ThenU′ will be an open cover of H([0,1]×[a,b]). By compactness, letU= {U1,U2, . . . ,Un}

be a finite subcover and let ϵ be the Lebesgue number corresponding to U.

By uniform continuity, there exists δ> 0 such that

|H(s, t )−H(s′, t ′)| < ϵ

4
whenever |s − s′| < δ and |t − t ′| < δ.
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Consider the partitions P1 : 0 = a0 < s1 < ·· · < sn = 1 of [0,1] and P2 : a = t0 < t1 < ·· · <
tm = b of [a,b] such that the partition size is less than δ.

For every pair (i , j ) such that 1 ≤ i ≤ n and 1 ≤ j ≤ m,

Ci j = γH(si ,t j )→H(si ,t j−1)→H(si−1,t j−1)→H(si ,t j )

does not intersect S.

By a similar argument as given in the Cauchy’s theorem, if i ntCi , j F (z)d z = 0 then

(3)
∫
γ=γ0

F (z)d z =
∫
γz0=γ1

F (z) =
m∑

j=1

n∑
i=1

∫
Ci , j

F (z)d z.

Claim:
∫

Ci , j F (z)d z = 0.

Note that
∣∣Ci , j

∣∣< ϵ. Thus diam
(
Ci , j

)< ϵ and we have ˆCi , j ⊂U for some U ∈U.

Hence by (1) and (2) and the fact that Ci , j ∩S =∅, we have∫
Ci , j

F = 0.

Therefore by (3), we have ∫
γ

F (z) =
∫
γz0

F (z)d z.

□


