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Residue Theorem

Let us explore the behavior of holomorphic functions around its isolated singularities a
bit further. Here we will state and prove the residue theorem. Residue theorem broadly
answers the following question: suppose you have a function f which is holomorphic
on an open set Q\ S, where S is a discrete set of singularities of f, then what can we say
about fy f(z2)dz, where y is some closed curve in Q\ S.

Suppose S was empty and y was null homotopic, then this is just the Cauchy’s theo-
rem. The Cauchy’s theorem tells us that this integral is equal to 0. So in some sense, the
residual theorem can be thought of as a generalization of the Cauchy’s theorem. How-
ever the presence of these singularities makes the answer to this question a bit more
complicated.
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DEFINITION 1 (Residue of a function at a point zj). Let f: Q\ S — C be a holomor-
phic function where Q is an open set and S is a discrete subset of Q2. For zp € S, let r >0
be such that D(zg,r) € Q and D(zy,7) NS = {zg}. Then in D(z0,r) \ {zo}, consider the

Laurent series expansion of f given by,

(&)

f@= ), an(z—z)"

n=—oo

We define the residue of f at zj to be

Res(f,zo) 1= a-1.

If zy is a removable singularity, then a_,, = 0 for every n € N. Hence Res(f, zo) = 0.

If zj is a pole of f of order 1, then

flo= 89

= in D(zp, r) \ {zo}
(z — zp)

where g # 0. Thus, we have,

(z—29)f(2)=g(2) = a0+a1(z—z0)+a2(z—zo)2...

= f(2)=

+ay+ax(z—zp) +....
(z— zp)

Hence Res (f, zo) = ao = g(zo).

If zy is a pole of order m, then

(z—20)" f(2) = g(2)

where g(z) # 0 on D(zp, 1) \ {zo}.
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Hence we have

__ % ., Gma
J@&= Y o

+am+ami1(z—20) +...

00 gV (z)
where g(z) = ¥ an(z—z0)". Therefore, Res(f,z0) = am-1 = =——.
n=0 (m-1)!

THEOREM 1 (Residue Theorem). LetQ be an open subset of C and S be a finite subset

of Q. Suppose f : Q\S — C is a bounded function. Lety be a null homotopic closed curve
inQ. Then

1 k
%fyﬂz)dz - ;Wy(zﬂf{es (£:2))

where S = {z1, 23, ..., zx} and W), is the winding number.

PROOFE. Define
k

Res Zj
g(2) = Z i ’.

(z— z]

Note that g is holomorphic on Q\ S.
Fix z; and r > 0 be such that D(z;,r) € Q and D(zj,r) NS = {z;}. We have

Res(f,2))

g(2) = -2

+ g1(2)
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where g; is the functions consists of the remaining terms of g. Then g; is holomorphic
on D(zj, r). Note that Res (g, z;) =Res(f, z;).
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Define F(z) = f(2) - g(2). If [, F(2)dz =0, then

| (r-g)@az=o
Y

1 1
SN %fyf(z)dz—%fg(z)dz

szes fz]
(z—2zj)

st [ 22

27i Jy (z— z]-)
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Wy (2) Res(f,2)
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Hence the proof will be completed if we manage to show that fy F(z)dz=0.
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Let us try to figure out the Laurent series expansion of F. Since F(z) = f(z) — g(2),

then in D(z;, )\ {z;},

o0

f@= ) anz—z)"

n=—oo
and

_Res(f,z;)) & n_ 4. x .
g(Z)—(Z_—Zj)+r;0bn(z—zj) = (Z_Zj)+n;0bn(z—z])

where the neighborhood D(z;,r) of z; is same as above.
On D(zj, 1) \ {zo}, we have
[e,@]

F(z) = n:z_ooa"(z_ zj)" - -2 + n;bn(z—zj)"

a1

o0 o0
- /
=Y anlz—z) "+ ) a,(z—z)".
n=2 n=0

Now, let us define a function G on D(zj,r) \ {z;} by

_n:2 _n+1 n=0 (n+1)

Then, G'(z) = F(z) and hence on D(z j»T)\{z;}, F has an anti-derivative. Therefore, if C

is a closed curve in D(zj, 1) \ {zo}, we have

(1) f F(z)dz=0.
C

If ze Q\ S, then r; > 0 be such that D(z,r) € Q and D(z,r;) NS = &. Then by Cauchy’s

theorem, for any closed curve C; in D(zy, 1),

© f F(z)dz = 0.
G

Lety:[a, b] — Q\ S be null-homotopic in Q. That is, there exists H: [0,1] x [a, b] — Q

such that yy =y and y; = y,, and such that y; is closed curve for every s € [0, 1], where

Yz (£) = zo for each 1 € [a, b].
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Since [0,1] x [a, b] is compact, so is H([0,1] x [a, b]) in Q. Let

W :={D(z,r;):z€ H([0,1] x [a, b)) \ S, D(z,r;) SQand D(z,r,)NS = @}U

{D(zj,1j):1< j<kzj€ H(0,1] x [a b)), D(z;,7}) N S = {2} and D(z;,7;) € Q}.

Then U’ will be an open cover of H([0, 1] x [a, b]). By compactness, let U = {Uy, U, ..., Uy}
be a finite subcover and let € be the Lebesgue number corresponding to U.

By uniform continuity, there exists 6 > 0 such that
€
|H(s,t)— H(s', t)| < 1 whenever |s—s'| <d and |t - t'| < §.
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Consider the partitions P1 :0=ap<s1<---<sp=1of [0,1]]and Pry:a=t) < t; <--- <
tm = b of [a, b] such that the partition size is less than 6.

For every pair (i, j) suchthat1<i<nand1<j<m,

Cij= Y H(sj,tj)—H(sj,tj—)—H(si-1,tj-1)— H(s;,t})

does not intersect S.
By a similar argument as given in the Cauchy’s theorem, if infc; jF(z)dz = 0 then
m n
(3) f F(z)dz = f F(2)=) ) | F(zdz.
Y=Yo Yzo=Y1 j=1i=1YGCi;
Claim: [, ; F(z)dz =0.
Note that |C;,j| < €. Thus diam (C; ;) < € and we have C; ; < U for some U € U.
Hence by (1) and (2) and the fact that C; ;N S = &, we have

f F=0.
C

i,j

fF(z):f F(z)dz.
Y Y

20

Therefore by (3), we have



