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Casorati-Weierstarss Theorem

We had explored the notions of removable singularity and the pole of a function f at an
isolated singularity zj in great detail. We also studied the behaviour of the function as we
approached these isolated singularities. For example, when we approach a removable
singularity zp of f, we notice that the limit should exists and when we approach a pole
of the function f at zy, we noticed that the absolute value of the function blow up.

We also explored a Laurent series expansion of a function f defined on an annulus
and we classified our singularities bases on how the negative coefficients of the Lau-
rent series behave. However, we have still not really looked into what happens when a
given isolated singularity is an essential singularity and how the function behaves as we
approach an essential singularity.

Recall that f(z) = elle has essential singularity at zp = 1. Then, for
1
zp=1——— wehave f(z;,) — lasn— oo
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and for

z,=1—————, we have f(z),) — i as n — oo.
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We will now prove a result which tells us that in fact the behaviour of essential singular-
ities can get as bad as once can expect.
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THEOREM 1 (Casorati-Weierstrass). Let zy be an essential singularity of a function
f- Then given a € C, there exists a sequence z, € D(zy, R) \ {zo} such that z, — zy and

f(zn) — .

PROOE. Suppose a € C be such that there does not exists a z, such that z,, — zp and
f(z,) — a. That is, there exists € > 0 such that D(a,€) N f(D(zg, R) \ {zo}) = @.

Consider g(z) = f(z)—a. Then g does not vanish on D(zy, R) \{zy}. Let h(z) = $ and
h i holomorphic on D(zy, R) \ {zo}. Since |g(z)| > €, we have h(z)| < % on D(zy, R) \ {zp}.
Hence # is bounded on D(zy, R) \ {zp}. By the Riemann removable singularity theorem,

zp is aremovable singularity of 4. Since h is not a constant function, on D(zy, R) we have
h(z) = (z—29)" 1 (2)
where m = 0 and h; (zp) # 0. We may assume that h; (z) # 0 on D(zp, R). Then we have

=(z—z0)"h1(2).

1
fl@)—a

That is,
_1
h1(2)

J— m.
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Thus f has a pole of order m at zy, which is a contradiction to the fact that zj is an
essential singularity of f. Hence there exists a sequence z, — z( such that f(z;) —

a. O

Let us now define what is meant by a meromorphic function. But before we do that,
let us recall the notion of the order of a pole of the function f at z;.
Let f be a function with an isolated singularity at zy. Let zy be a pole of order m at

zp. That is,

fla)= 8(2)

(z—20)"
in D(zg, R) \ {zo} where g is holomorphic on D(zg, R) and g(zg) # 0.
We will similarly define the notion of order of zero of a holomorphic function f
which vanishes at a point zy. Suppose f be a non-constant holomorphic function in

aneighborhood of a point zy such that f(zp) = 0. Hence we have,
f@)=(z-20)"g(2)

where g is holomorphic and g(zp) # 0. We then say that f has a zero of order m at z.
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DEFINITION 1 (Meromorphic Function). Let Q be an open connected subset and
S c Q be asubset of Q. Let f: Q\S — C be holomorphic on Q\ S. We say that f is a

meromorphic function on Q if

(1) Sis adiscrete set.

(2) f has either a removable singularity or a pole at points of S.

We say that two meromorphic functions f and g on Q are equivalentif f : Q\S; — C
and g:Q\ S, — C satisfies f(z) = g(z) on Q\ (5; U S»). It is left to the reader to check
that if S; and S, are discrete sets, then so is S; U S,.

Define .4 (Q)) := { Equivalence classes of meromorphic functions on Q}.

Let f,geQ,ie., f:Q\S) — Cand g:Q\S; — Cbesuch that f = gon Q\ (5;US»).
Define f + g to be the equivalence class of (f +g) : Q\ (S;US2) — C given by (f+ g)(2) =
f(2) + g(z). Similarly define fg to be the equivalence class of (fg) : Q\ (S§;US2) — C
given by (fg)(z) = f(2)g(z). Let zg € S; U S». Then zj is either a removable singularity of

fgorapoleof fg.

We know the behaviour of the functions f and g in a neighborhood of z,

f(2)=(z—20)"™ fi(2) where fj(z9) #0,

g(z) = (z—29)"™ g1(2) where g1(z) #0

and m;, my are non-negative or negative based on whether z; is a removable singularity

or pole of f, g respectively. Then,

f(2)g(2) = (z—20) ™™ f1(2) g1 (2).
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PROPOSITION 2. The space of meromorphic function /4 (Q) on Q is a field with oper-

ations defined above.

PROOE. Let f € 4 (Q)*,i.e., thatis f isanon-zero meromorphic function on Q. Then
f:Q\S — Cisanon-zero holomorphic function. Let S; = {z€ C: f(z) = 0}. By identity
theorem, S; is discrete.

Define g: Q\(SuUS;) — Cby g(z) = % Then g is holomorphic on Q\ (SU §;). Let
zp € S1. Then f(zp) = 0. Thus we have f(z) = (z— z9)"™ f1(z9), where fi(zg) # 0. Now, in
D(zy, R) \ {zo}, we have fi(z) # 0 for z € D(zg, R) \ {zo} and
f@)  (z—zp)™

g(z) =

1
Thatis, g = ? has a pole of order m, at z.
If zp € S, then z is either a pole or a removable singularity of f. First let us consider
the case when z is a pole of f.

If zj is a pole of f, then we have

flo) = f2(2)

 (z—z9)™2
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where f>(z) # 0 on D(zp, R) \ {zo}. Hence,

1 o
8(2)=——==(z2—2)) (fz(z))’

f(2)

1
and g = ? has a removable singularity at z,.
Now it is left as an exercise to the reader to check if zj is a removable singularity of
f, then z; is either a removable singularity or a pole of g. Hence g is meromorphic on Q

and f is a unit in . (Q). U

DEFINITION 2 (Order of a meromorphic function at zy). Let f be a meromorphic

function on Q. Then for z; € Q, define the order of f at z, to be:

(i) if zp € S and z( is a removable singularity, then order of f at zj is the order of the
zero at zp of f, i.e., if f(2) = (z— 29)""g(2), then ord (f) = m. (Note that here m is
non-negative.)

(i) if zo € Sand is a pole of order m, then ord,,(f) = —m.

(iii) if zo ¢ S and we have f(z) = (z - z9) " g(z), where m = 0, then ord_, (f) = m.

(iv) if f =0, then ordy, (f) = oco.
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EXERCISE 3. Prove that ord,, : 4 (Q)) — Z satisfies

(1) ordy (fg) = ord, (f)+ordy(g)
(2) ordy(f+g) =min(ordy(f), ordy(g)).



