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Casorati-Weierstarss Theorem

We had explored the notions of removable singularity and the pole of a function f at an

isolated singularity z0 in great detail. We also studied the behaviour of the function as we

approached these isolated singularities. For example, when we approach a removable

singularity z0 of f , we notice that the limit should exists and when we approach a pole

of the function f at z0, we noticed that the absolute value of the function blow up.

We also explored a Laurent series expansion of a function f defined on an annulus

and we classified our singularities bases on how the negative coefficients of the Lau-

rent series behave. However, we have still not really looked into what happens when a

given isolated singularity is an essential singularity and how the function behaves as we

approach an essential singularity.

Recall that f (z) = e
1

1−z has essential singularity at z0 = 1. Then, for

zn = 1− 1

2πi n
, we have f (zn) −→ 1 as n −→∞

and for

z ′
n = 1− 1

2πi n + iπ
2

, we have f (z ′
n) −→ i as n −→∞.

We will now prove a result which tells us that in fact the behaviour of essential singular-

ities can get as bad as once can expect.
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THEOREM 1 (Casorati-Weierstrass). Let z0 be an essential singularity of a function

f . Then given α ∈ C, there exists a sequence zn ∈ D(z0,R) \ {z0} such that zn −→ z0 and

f (zn) −→α.

PROOF. Suppose α ∈C be such that there does not exists a zn such that zn −→ z0 and

f (zn) −→α. That is, there exists ϵ> 0 such that D(α,ϵ)∩ f (D(z0,R) \ {z0}) =∅.

Consider g (z) = f (z)−α. Then g does not vanish on D(z0,R)\{z0}. Let h(z) = 1
g (z) and

h i holomorphic on D(z0,R) \ {z0}. Since |g (z)| > ϵ, we have h(z)| < 1
ϵ on D(z0,R) \ {z0}.

Hence h is bounded on D(z0,R) \ {z0}. By the Riemann removable singularity theorem,

z0 is a removable singularity of h. Since h is not a constant function, on D(z0,R) we have

h(z) = (z − z0)mh1(z)

where m ≥ 0 and h1(z0) ̸= 0. We may assume that h1(z) ̸= 0 on D(z0,R). Then we have

1

f (z)−α
= (z − z0)mh1(z).

That is,

f (z) =α+
1

h1(z)

(z − zm
0

.
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Thus f has a pole of order m at z0, which is a contradiction to the fact that z0 is an

essential singularity of f . Hence there exists a sequence zn −→ z0 such that f (zn) −→
α. □

Let us now define what is meant by a meromorphic function. But before we do that,

let us recall the notion of the order of a pole of the function f at z0.

Let f be a function with an isolated singularity at z0. Let z0 be a pole of order m at

z0. That is,

f (z) = g (z)

(z − z0)m

in D(z0,R) \ {z0} where g is holomorphic on D(z0,R) and g (z0) ̸= 0.

We will similarly define the notion of order of zero of a holomorphic function f

which vanishes at a point z0. Suppose f be a non-constant holomorphic function in

a neighborhood of a point z0 such that f (z0) = 0. Hence we have,

f (z) = (z − z0)m g (z)

where g is holomorphic and g (z0) ̸= 0. We then say that f has a zero of order m at z0.

(Refer Slide Time: 15:59)



4

DEFINITION 1 (Meromorphic Function). Let Ω be an open connected subset and

S ⊂ Ω be a subset of Ω. Let f : Ω \ S −→ C be holomorphic on Ω \ S. We say that f is a

meromorphic function onΩ if

(1) S is a discrete set.

(2) f has either a removable singularity or a pole at points of S.

We say that two meromorphic functions f and g onΩ are equivalent if f :Ω\S1 −→C

and g :Ω \ S2 −→ C satisfies f (z) = g (z) on Ω \ (S1 ∪S2). It is left to the reader to check

that if S1 and S2 are discrete sets, then so is S1 ∪S2.

Define M (Ω) := { Equivalence classes of meromorphic functions onΩ}.

Let f , g ∈Ω, i.e., f :Ω\S1 −→C and g :Ω\S1 −→C be such that f = g onΩ\(S1∪S2).

Define f +g to be the equivalence class of ( f +g ) :Ω\(S1∪S2) −→C given by ( f +g )(z) =
f (z)+ g (z). Similarly define f g to be the equivalence class of ( f g ) : Ω \ (S1 ∪S2) −→ C

given by ( f g )(z) = f (z)g (z). Let z0 ∈ S1 ∪S2. Then z0 is either a removable singularity of

f g or a pole of f g .

We know the behaviour of the functions f and g in a neighborhood of z0,

f (z) = (z − z0)m1 f1(z) where f1(z0) ̸= 0,

g (z) = (z − z0)m2 g1(z) where g1(z) ̸= 0

and m1,m2 are non-negative or negative based on whether z0 is a removable singularity

or pole of f , g respectively. Then,

f (z)g (z) = (z − z0)m1+m2 f1(z)g1(z).
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PROPOSITION 2. The space of meromorphic function M (Ω) onΩ is a field with oper-

ations defined above.

PROOF. Let f ∈M (Ω)∗, i.e., that is f is a non-zero meromorphic function onΩ. Then

f :Ω\ S −→C is a non-zero holomorphic function. Let S1 = {z ∈C : f (z) = 0}. By identity

theorem, S1 is discrete.

Define g :Ω\(S∪S1) −→C by g (z) = 1

f (z)
. Then g is holomorphic onΩ\(S∪S1). Let

z0 ∈ S1. Then f (z0) = 0. Thus we have f (z) = (z − z0)m1 f1(z0), where f1(z0) ̸= 0. Now, in

D(z0,R) \ {z0}, we have f1(z) ̸= 0 for z ∈ D(z0,R) \ {z0} and

g (z) = 1

f (z)
=

1
f1(z)

(z − z0)m1
.

That is, g = 1

f
has a pole of order m1 at z0.

If z0 ∈ S, then z0 is either a pole or a removable singularity of f . First let us consider

the case when z0 is a pole of f .

If z0 is a pole of f , then we have

f (z) = f2(z)

(z − z0)m2
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where f2(z) ̸= 0 on D(z0,R) \ {z0}. Hence,

g (z) = 1

f (z)
= (z − z0)m2

(
1

f2(z)

)
,

and g = 1

f
has a removable singularity at z0.

Now it is left as an exercise to the reader to check if z0 is a removable singularity of

f , then z0 is either a removable singularity or a pole of g . Hence g is meromorphic onΩ

and f is a unit in M (Ω). □

DEFINITION 2 (Order of a meromorphic function at z0). Let f be a meromorphic

function onΩ. Then for z0 ∈Ω, define the order of f at z0 to be:

(i) if z0 ∈ S and z0 is a removable singularity, then order of f at z0 is the order of the

zero at z0 of f , i.e., if f (z) = (z − z0)m g (z), then or dz0 ( f ) = m. (Note that here m is

non-negative.)

(ii) if z0 ∈ S and is a pole of order m, then or dz0 ( f ) =−m.

(iii) if z0 ̸∈ S and we have f (z) = (z − z0)m g (z), where m ≥ 0, then or dz0 ( f ) = m.

(iv) if f ≡ 0, then or dz0 ( f ) =∞.
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EXERCISE 3. Prove that or dz0 : M (Ω) −→Z satisfies

(1) or dz0 ( f g ) = or dz0 ( f )+or dz0 (g )

(2) or dz0 ( f + g ) ≥ min
(
or dz0 ( f ),or dz0 (g )

)
.


