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Laurent series

In this lecture, our goal would be to generalize the expression that we gave for a function

f which has a pole at z0 and get hold of a more general such series expansion which

is called the Laurent series expansion. In order to do that we will be now considering

functions which are defined on an annulus and we will be considering doubly infinite

series. So, before we really start developing our theory with Laurent series, let us set

certain notations that we will be using.

DEFINITION 1 (Doubly Infinite Series). Let {zn : n = 0,±1,±2, . . . } be a doubly infi-

nite sequence of complex numbers. The expression
∞∑

n=−∞
zn is said to converge if

∞∑
n=0

zn

converges and
∞∑

n=1
z−n converges.

We say that
∞∑

n=−∞
zn converges absolutely if

∞∑
n=0

zn converges absolutely and
∞∑

n=1
z−n

converges absolutely.

Then we say that

∞∑
n=−∞

zn =
∞∑

n=0
zn +

∞∑
n=1

z−n

We define uniform convergence also very similarly. Let un , for n = 0,±1,±2, . . . , be

functions defined on a set U . We say that
∞∑

n=−∞
un converges uniformly on U if

∞∑
n=0

un(z)

converges uniformly on U and
∞∑

n=1
u−n(z) converges uniformly on U .
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DEFINITION 2 (Annulus). An annulus A(z0,R1,R2) around a point z0 ∈C, for o ≤ R1 <
R2, is the set

A(z0,R1,R2) := {z ∈C : R1 < |z − z0| < R2}.

We now have all the ingredients to talk about the Laurent series development in an

annulus.

THEOREM 1 (Laurent Series). Let f be a function holomorphic on an annulus A(z0,R1,R2).

Then there exist an ∈C for n ∈Z such that

f (z) =
∞∑

n=∞
an(z − z0)n

called the Laurent series of f around z0, where the doubly infinite series converges abso-

lutely and uniform in A(z0,r1,r2) where R1 < r1 < r2 < R2. Moreover, if γ(z) = z0+r e i t for

t ∈ [0,2π], where R1 < r < R2, then

an = 1

2πi

∫
γ

f (z)

(z − z0)n+1
d z.
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PROOF. For R1 < r1 < r2 < R2, let

γ1(t ) = z0 + r1e i t for t ∈ [0,2π]

and

γ2(t ) = z0 + r2e i t for t ∈ [0,2π].

Notice that γ1 is homotopic to γ2 as closed curves in A(z0,R1,R2).

Hence,

∫
γ1

f (z)

(z − z0)n+1
d z =

∫
γ2

f (z)

(z − z0)n+1
d z.
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On D(z0,R2), let γr (t ) = z0 + r e i t . Then define

g (z) :=
∫
γr

f (w)

w − z
d z

where |z − z0| < r and R1 < r < R2.

Claim: g is continuous and holomorphic on D(z0,R2).

Let z ′ ∈ D(z0,R2). Let R be such that R1 < R < R2 and |z ′− z0| < R. Then, on D(z ′,ϵ) for

ϵ> 0 small, there exists δ> 0 such that |w − z| > δ, |w − z ′| > δ for every w ∈ γR .

Then,

|g (z)− g (z ′)| =
∣∣∣∣ 1

2πi

∫
γR

f (w)

w − z
d z − 1

2πi

∫
γR

f (w)

w − z ′ d z

∣∣∣∣
=

∣∣∣∣ 1

2πi

∫
γR

f (w)(z − z ′)
(w − z)(w − z ′)

d w

∣∣∣∣
≤ |z − z ′|

(
M

δ2
2πR

)
.

Hence g is continuous at z ′.

For z ̸= z ′,
g (z)− g (z ′)

z − z ′ = 1

2πi

∫
γR

f (w)

(w − z)(w − z ′)
d w.
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Now it is left as an exercise to the reader to verify that

lim
z→z ′
z ̸=z ′

g (z)− g (z ′)
z − z ′ = 1

2πi

∫
γR

f (w)

(w − z ′)2
d w.

Hence g is holomorphic on D(z0,R2).

Now, define a function h on {z : |z − z0| > R1} by

h(z) =− 1

2πi

∫
γr

f (w)

w − z
d w

where r ≤ |z − z0| and R1 < r < R2.

(Refer Slide Time: 24:14)

Let z ∈ A(z0,R1,R2) and R1 < r1 < r2 < R2 be such that r1 < |z − z0| < r2. Consider a

curve γ from γr1 (0) to γr2 (0) such that z ̸∈ γ.

Let σ= γr2 + (−γ)+ (−γr1 )+γ. Then σ is a closed curve in A(z0,R1,R2). Note that σ is

null homotopic in A(z0,R1,R2).
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Then, on A(z0,R1,R2), we have

Wσ(z) f (z) = 1

2πi

∫
σ

f (w)

w − z
d w

= 1

2πi

(∫
γr2

f (w)

w − z
d w +

∫
−γ

f (w)

w − z
d w +

∫
(−γr1 )

f (w)

w − z
d w +

∫
γ

f (w)

w − z
d w

)
= g (z)+h(z)

We know that g (z) can be written as a power series expansion on D(z0,R2). Let us see

what happens to h(z).

On D (0,1/R1) \ {0}, define

h1(z) = h

(
z0 + 1

z

)
.

Since ∣∣∣∣z0 + 1

z
− z0

∣∣∣∣= ∣∣∣∣1

z

∣∣∣∣> R1,

h1 is well defined as {z : |z − z0| > R1} is the domain of definition of h.

Claim: h1 is locally bounded around 0.

For |z| > s, where s > 0 is some large real,

|h(z)| =
∣∣∣∣∣− 1

2πi

∫
γr1

f (w)

w − z
d w

∣∣∣∣∣
≤ M2πr1

2πd(z,γr1 )

= Mr1

d(z,γr1 )

< 1.

Since h1(z) = h
(
z0 + 1

z

)
where |z| < ϵ for ϵ > 0 small, we have

∣∣z0 + 1
z

∣∣ > s and |h1(z)| =∣∣h (
z0 + 1

z

)∣∣< 1. Hence h1 has a removable singularity at 0.

That is, we have, h1(z) =
∞∑

n=0
bn zn . Since h1(0) = 0, we can rewrite the series expan-

sion for h1 on D(0,1/R1) as

h1(z) =
∞∑

n=1
bn zn .
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Let z0 + 1
z = w . Then z = 1

w−z0
. Hence h(w) = h1

(
1

w−z0

)
.

Thus, if z ∈ {z ∈C : |z − z0| > R1},

h(z) = h1

(
1

z − z0

)
=

∞∑
n=1

bn

(
1

z − z0

)n

=
−∞∑

n=−1
an(z − z0)n .

Thus,

f (z) = g (z)+h(z)

=
∞∑

n=0
an(z − z0)n +

∞∑
n=1

a−n(z − z0)−n

=
∞∑

n=−∞
an(z − z0)n .

□
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8

Suppose f has an isolated singularity at z0. Then, for some R > 0, we have

f (z) =
∞∑

n=−∞
an(z − z0)n on D(z0,R) \ {z0}.

Suppose z0 is a removable singularity of f , then we have

f (z) =
∞∑

n=0
bn(z − z0)n on D(z0,R).

Hence an = 0 for every n < 0.

The converse of above observation is also true. This can be proved if one back track

what we did above. That is if an = 0 for every n < 0, then f has a power series expansion

around z0. Hence z0 is a removable singularity. These observation will the following

proposition.

PROPOSITION 2. Let z0 be an isolated singularity of the function f . Then f has a

removable singularity at z0 if and only if an = 0 for n < 0 in the Laurent series expansion

of f around z0.

If f has a pole at z0 of order m, then (z − z0)m f has a removable singularity at z0.

Thus, on D(z0,R) \ {z0}, we have,

f (z) = b−m

(z − z0)m
+·· ·+ b−1

(z − z0)
+

∞∑
n=0

an(z − z0)n .

Hence an = 0 for each n <−m in the Laurent series expansion around z0 of f .

Here also, the converse of the above observation is true. That is, if an = 0 for n <−m

in the Laurent series expansion around z0 of f , then f has a pole of order m at z0. The

proof is trivial, as it follows from the definition.

PROPOSITION 3. Let z0 be an isolated singularity of the function f . Then f has a pole

of order m at z0 if and only if an = 0 for n < −m in the Laurent series expansion of f in

D(z0,R) \ {z0} = A(z0,0,R).

PROPOSITION 4. Let z0 be an isolated singularity of the function f . Then f has an

essential singularity at z0 if and only if an ̸= 0 for infinitely many negative integers n.


