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Pole of a Function

In the last lecture we saw what was meant by a removable singularity of a function f.
We observed that an isolated singularity of f is a removable singularity if and only if f
is locally bounded around that point. We also noted that if an isolated singularity z is a
removable singularity then the limit 211_{1210 f(2) should exist. By considering the behavior
of f(z) as z goes to the singularity, let us now study the other types of singularities that
can occur.
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DEFINITION 1 (Pole of a function). Let zy be an isolated singularity of f. We say that
f has a pole at zj if Zlim | f(2)| = co. That is, given M > 0, there exists € > 0 such that
— 20

| f(2)| > M for each z € D(zg,€) \ {zo}.

EXAMPLE 1.



cos(z) cos(z)

e Let f(2) =

. Then 0 is an isolated singularity of f. Also, lin}) = 00.
Viand

z
Hence f has a pole at zp = 0.
1

e Recall that if f(z) = el — 2, then 1 is an isolated singularity of f and lin} f(2)
Vind

does not exists. Hence f does not have a pole at 1.

DEFINITION 2 (Essential Singularity of a function). Let zy be an isolated singularity
of f. Then z; is called an essential singularity of f if it is neither a removable singularity

nor a pole of f.

Let zy be a pole of f. Then lim |f(z)| = co. Hence there exists R > 0 such that on
Z—20

D(zy,R) \ {zo}, f(2) #0. In particular, on D(zy, R) \ {zo}, g(2) := % is holomorphic.
Then zj is an isolated singularity of g.

Let R > 0 be such that | f(z)| > M on D(zy, R) \ {zp}. That is,on D(zg, R) \ {29}, we have
lg(2)| < ]\—14 By Riemann removable singularity theorem, zj is a removable singularity of
g. Now it is left as an exercise for the reader to verify that ZIEIZIO g(z)=0.

Hence let us define & to be

g(2) yon D(zg, R) \ {zo}
h(z):=

0 for z = z;.

Then £ is holomorphic. By factorization and principle of analytic continuation, on

D(zp, R),

h(z) =(z—2z9)"h1(2) where hy(z) Z0and m = 1.

Hence on D(zg, R) \ {zg}, we have

1
e =g(2) = (z—20)" h1 ().
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Since h1(z) # 0 on D(zy, R), let hy(z) = h—()’ which is holomorphic on D(zy, R).
12
Thus, we have, on D(zy, R) \ {zg},
ho(z)
1@ = (z—z9)™

Since hy is complex analytic, on D(zy, R), we have

ho(2) = ag+ a1 (z—29) ++++ am-1(z— 20) ™ + Z an(z—z9)" where ag # 0.
n=m

Hence, on D(zy, R) \ {zp},

ap a am-1

flz)=

’ e + ) an(z=20)""", ag #0.
(z—zp)™ (z2—zp)™m 1 (z— zo) n;m n( 0) 0 7

Put g1(z) = Y an(z—z9)" ™. Observe that g, is a holomorphic function on D(zy, R).
n=zm
The function S given by

ap a) Am—1
+ e —
(z—29)™  (z2—29)™" (z—zo)

S(z) =

is called the singular part of f around the pole zy and the integer m is called the order of

the pole at z;.



