Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 34 Pole of a Function

In the last lecture we saw what was meant by a removable singularity of a function f. We observed that an isolated singularity of f is a removable singularity if and only if f is locally bounded around that point. We also noted that if an isolated singularity z_0 is a removable singularity then the limit $\lim_{z \to z_0} f(z)$ should exist. By considering the behavior of f(z) as z goes to the singularity, let us now study the other types of singularities that can occur.

(Refer Slide Time: 00:46)

DEFINITION 1 (Pole of a function). Let z_0 be an isolated singularity of f. We say that f has a pole at z_0 if $\lim_{z \to z_0} |f(z)| = \infty$. That is, given M > 0, there exists $\epsilon > 0$ such that |f(z)| > M for each $z \in D(z_0, \epsilon) \setminus \{z_0\}$.

EXAMPLE 1.

- Let $f(z) = \frac{\cos(z)}{z}$. Then 0 is an isolated singularity of f. Also, $\lim_{z \to 0} \left| \frac{\cos(z)}{z} \right| = \infty$. Hence f has a pole at $z_0 = 0$.
- Recall that if $f(z) = e^{1-z}$, then 1 is an isolated singularity of f and $\lim_{z \to 1} f(z)$ does not exists. Hence f does not have a pole at 1.

DEFINITION 2 (Essential Singularity of a function). Let z_0 be an isolated singularity of f. Then z_0 is called an essential singularity of f if it is neither a removable singularity nor a pole of f.

Let z_0 be a pole of f. Then $\lim_{z \to z_0} |f(z)| = \infty$. Hence there exists R > 0 such that on $D(z_0, R) \setminus \{z_0\}, f(z) \neq 0$. In particular, on $D(z_0, R) \setminus \{z_0\}, g(z) := \frac{1}{f(z)}$ is holomorphic. Then z_0 is an isolated singularity of g.

Let R > 0 be such that |f(z)| > M on $D(z_0, R) \setminus \{z_0\}$. That is, on $D(z_0, R) \setminus \{z_0\}$, we have $|g(z)| < \frac{1}{M}$. By Riemann removable singularity theorem, z_0 is a removable singularity of g. Now it is left as an exercise for the reader to verify that $\lim_{z \to z_0} g(z) = 0$.

Hence let us define h to be

$$h(z) := \begin{cases} g(z) & \text{, on } D(z_0, R) \setminus \{z_0\} \\ 0 & \text{, for } z = z_0. \end{cases}$$

Then *h* is holomorphic. By factorization and principle of analytic continuation, on $D(z_0, R)$,

$$h(z) = (z - z_0)^m h_1(z)$$
 where $h_1(z) \neq 0$ and $m \ge 1$.

Hence on $D(z_0, R) \setminus \{z_0\}$, we have

$$\frac{1}{f(z)} = g(z) = (z - z_0)^m h_1(z).$$

(Refer Slide Time: 13:32)

$$\frac{1}{g(z)} = g(z) = (z - z_0)^m h_1(z).$$

$$\frac{1}{g(z)}$$
We may assume $h_1(z) \neq 0$ on $D(z_0, R).$

$$\frac{1}{det} = h_0(z) = \frac{1}{h_1(z)} \text{ which is holl on } D(z_0, R)$$

$$\frac{1}{g(z)} = \frac{1}{h_0(z)} \text{ on } D(z_0, R) \setminus \frac{1}{2}z_0.$$

$$\frac{1}{(z - z_0)^m}$$
Since h_0 is Complex analytic, we have
$$h_0(z) = a_m + a_{m-1}(z - z_0) + \dots + a_{m-1}(z - z_0)^{m-1}$$

$$+ \sum_{n \geq m} a_n (z - z_0)^n$$

$$\frac{1}{n \geq m}$$

Since $h_1(z) \neq 0$ on $D(z_0, R)$, let $h_0(z) = \frac{1}{h_1(z)}$, which is holomorphic on $D(z_0, R)$. Thus, we have, on $D(z_0, R) \setminus \{z_0\}$,

$$f(z) = \frac{h_0(z)}{(z - z_0)^m}$$

Since h_0 is complex analytic, on $D(z_0, R)$, we have

$$h_0(z) = a_0 + a_1(z - z_0) + \dots + a_{m-1}(z - z_0)^{m-1} + \sum_{n \ge m} a_n(z - z_0)^n$$
 where $a_0 \ne 0$.

Hence, on $D(z_0, R) \setminus \{z_0\}$,

$$f(z) = \frac{a_0}{(z-z_0)^m} + \frac{a_1}{(z-z_0)^{m-1}} + \dots + \frac{a_{m-1}}{(z-z_0)} + \sum_{n \ge m} a_n (z-z_0)^{n-m}, \ a_0 \neq 0.$$

Put $g_1(z) = \sum_{n \ge m} a_n (z - z_0)^{n-m}$. Observe that g_1 is a holomorphic function on $D(z_0, R)$. The function *S* given by

$$S(z) = \frac{a_0}{(z - z_0)^m} + \frac{a_1}{(z - z_0)^{m-1}} + \dots + \frac{a_{m-1}}{(z - z_0)}$$

is called the singular part of f around the pole z_0 and the integer m is called the order of the pole at z_0 .