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Singularities of a Holomorphic Function

Often times we are interested in studying functions f which are defined and holomor-

phic on a set Ω \ S where the set S is called the set of singularities of f . Here we will

be discussing the notion of singularities of a holomorphic function. Singularities come

in varying levels of severity and we will be exploring them one by one. Let us begin by

defining what is meant by a singularity of a holomorphic function.
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DEFINITION 1 (Isolated Singularity). We say that a point z0 is an isolated singularity

of a function f if f is holomorphic on D(z0,R) \ {z0} for some R > 0.

EXAMPLE 1.

(1) Let f (z) = ez −1

z
on C\ {0}.
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(2) Let g (z) = cos(z)

z
on C\ {0}.

(3) Let h(z) = e

1

1− z on C\ {1}.

Here the functions f and g have isolated singularity at z0 = 0 and the function h has

an isolated singularity at z0 = 1.

DEFINITION 2 (Removable Singularity). Let z0 be an isolated singularity of a holo-

morphic function f , i.e., there exists an R > 0 such that f is holomorphic on D(z0,R) \

{z0}. We say that z0 is removable singularity of f if there exists a function g holomorphic

on D(z0,R) and such that f (z) = g (z) on D(z0,R) \ {z0}.

Let us revisit the examples.

(1) Let f (z) = ez −1

z
. Then f has an isolated singularity at z0 = 0. Let R > 0 be any

real number. Note that in D(0,R), we have

ez −1 =
( ∞∑

n=0

zn

n!

)
−1 =

∞∑
n=1

zn

n!
.

Define F (z) :=
∞∑

n=1

zn−1

n!
. Then F is holomorphic on D(0,R). (Why?)

Hence on D(0,R), we have

zF (z) = z

( ∞∑
n=1

zn−1

n!

)
=

∞∑
n=1

zn

n!
.

Hence zF (z) = ez −1. For z ̸= 0, in particular on D(0,R) \ {0}, we have

F (z) = ez −1

z
= f (z).

Note that if an isolated singularity z0 of f is a removable singularity, then lim
z→z0
z ̸=z0

f (z)

exists.

(2) Let g (z) = cos(z)

z
. Then g has an isolated singularity at 0. Note that cos(0) = 1.

We know that cos(z) is a continuous function and hence there exists R > 0 such
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that on D(0,R), |cos(z)| < M for some M > 0. Observe that,

lim
z→0

∣∣∣∣cos(z)

z

∣∣∣∣=∞.

If 0 were to be a removable singularity, lim
z→0

∣∣∣∣cos(z)

z

∣∣∣∣ should exists. Hence 0 is not

a removable singularity.

(3) Let h(z) = e

1

1− z . Then h has an isolated singularity at 1.

Let zn = 1− 1

2πi n
, so that zn −→ 1 as n −→∞. Then

h(zn) = e

1

1− (
1− 1

2πi n

)
= e2πi n = 1.

Hence lim
n→∞h(zn) = 1.

Let z ′
n = 1− 1

2πi n + πi
2

. Then z ′
n −→ 1 as n −→∞. Now,

h(z ′
n) = exp

 1

1−
(
1− 1

2πi n+πi
2

)
= exp

(
2πi n + πi

2

)
= i .

Here, lim
n→∞h(z ′

n) = i . Hence h does not have a removable singularity at z = 1.
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THEOREM 2 (Riemann Removable Singularity Theorem). Let z0 be an isolated singu-

larity of a function f , i.e., there exists R > 0 such that f is holomorphic on D(z0,R) \ {z0}.

Then f has a removable singularity at z0 if and only if f is locally bounded around z0 (i.e.

there exist ϵ> 0 and M > 0 such that | f (z)| ≤ M for each z ∈ D(z0,ϵ) \ {z0}).

PROOF. (⇒) Assume that f has a removable singularity at z0. Then there exists a

holomorphic function g on D(z0,R) that agrees with f on D(z0,R) \ {z0} and since g is

continuous at z0, g is bounded in a neighborhood D(z0,ϵ) of z0. Hence f is bounded in

D(z0,ϵ) \ {z0}.

(⇐) Let us now assume that f is locally bounded in a neighborhood D(z0,R) \ {z0}.

Define h : D(z0,R) −→C by

h(z) :=

(z − z0) f (z), z ∈ D(z0,R) \ {z0}

0, z = z0.

Then h is continuous at z0 (verify). If h was holomorphic on D(z0,R), then there exists a

power series expansion of h on D(z0,R) given by

h(z) =
∞∑

n=0
an(z − z0)n
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and since h(z0) = 0, we have

h(z) =
∞∑

n=1
an(z − z0)n .

That is, on D(z0,R) we have,

h(z) = (z − z0)

( ∞∑
n=1

an(z − z0)n−1
)

Define g (z) :=
∞∑

n=1
an(z − z0)n−1. Then on D(z0,R) \ {z0}, we have

h(z) = (z − z0) f (z) = (z − z0)g (z) =⇒ f (z) = g (z).

Hence f has a removable singularity at z0.

(Refer Slide Time: 35:02)

Claim: h is holomorphic on D(z0,R).

We shall use Morera’s theorem for proving above claim.

If a triangular curve T satisfies z0 ̸∈ T̂ , then T is hull homotopic and we have
∫

T h = 0.

Let us consider the case when z0 is a vertex of T = γz0→z1→z2→z0 , where z1, z2 ∈
D(z0,R). Let d = ∣∣γz0→z1→z2→z0

∣∣. Now if w1 ∈ γz0→z1 and w2 ∈ γz2→z0 , then by Cauchy’s
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theorem we have ∫
γw1→z1→z2→w2→w1

h(z)d z = 0.

Hence, ∫
T

h(z)d z =
∫
γz0→w1→w2→z0

h(z)d z +
∫
γw1→z1→z2→w2→w1

h(z)d z

=
∫
γz0→w1→w2→z0

h(z)d z.

Since h is continuous, given ϵ > 0, let δ > 0 be such that |h(w)−h(z0)| < ϵ

d
, whenever

|w − z0| < δ. But h(z0) = 0, then |h(w)| < ϵ

d
, whenever |w − z0| < δ.

Now pick w1, w2 above such that γ̂z0→w1→w2→z0 ⊆ D(z0,δ). Then,

∣∣∣∣∫
T

h(z)d z

∣∣∣∣=
∣∣∣∣∣
∫
γz0→w1→w2→z0

h(z)d z

∣∣∣∣∣≤ ϵ

d

∣∣γz0→w1→w2→z0

∣∣= ϵ.

(Refer Slide Time: 44:27)

Hence

∣∣∣∣∫
T

h(z)d z

∣∣∣∣< ϵ. Since the ϵ was arbitrary, we have
∫

T
h(z)d z = 0.
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Now let us consider the case where z0 is an edge of T . If T = γz1→z2→z3→z1 and with-

out loss of generality, let z0 ∈ γz1→z2 . Then,∫
T

h(z)d z =
∫
γz1→z0→z3→z1

h(z)d z +
∫
γz2→z3→z0→z2

h(z)d z.

But we have already proved the case where z0 is a vertex of the triangle. Hence,∫
γz1→z0→z3→z1

h(z)d z = 0,
∫
γz2→z3→z0→z2

h(z)d z = 0.

Therefore, ∫
T

h(z) = 0.

Finally, if z0 is in the interior of T̂ , where T = γz1→z2→z3→z1 . Here also we can apply the

case where z0 is a vertex by decomposing the integral
∫

T h(z)d z as∫
T

h(z)d z =
∫
γz1→z0→z3→z1

h(z)d z +
∫
γz2→z0→z1→z2

h(z)d z +
∫
γz3→z0→z2→z3

h(z)d z.

But each of the integral in the RHS is 0, hence
∫

T
h(z)d z = 0. □


