Complex Analysis

Prof. Pranav Haridas

Kerala School of Mathematics

Lecture No - 33

Singularities of a Holomorphic Function

Often times we are interested in studying functions f which are defined and holomorphic on a set $\Omega \setminus S$ where the set S is called the set of singularities of f. Here we will be discussing the notion of singularities of a holomorphic function. Singularities come in varying levels of severity and we will be exploring them one by one. Let us begin by defining what is meant by a singularity of a holomorphic function.

(Refer Slide Time: 00:46)

DEFINITION 1 (Isolated Singularity). We say that a point z_0 is an isolated singularity of a function f if f is holomorphic on $D(z_0, R) \setminus \{z_0\}$ for some R > 0.

EXAMPLE 1.

(1) Let
$$f(z) = \frac{e^z - 1}{z}$$
 on $\mathbb{C} \setminus \{0\}$.

(2) Let
$$g(z) = \frac{\cos(z)}{z}$$
 on $\mathbb{C} \setminus \{0\}$.

(3) Let
$$h(z) = e^{\frac{1}{1-z}}$$
 on $\mathbb{C} \setminus \{1\}$.

Here the functions f and g have isolated singularity at $z_0 = 0$ and the function h has an isolated singularity at $z_0 = 1$.

DEFINITION 2 (Removable Singularity). Let z_0 be an isolated singularity of a holomorphic function f, i.e., there exists an R > 0 such that f is holomorphic on $D(z_0, R) \setminus \{z_0\}$. We say that z_0 is removable singularity of f if there exists a function g holomorphic on $D(z_0, R)$ and such that f(z) = g(z) on $D(z_0, R) \setminus \{z_0\}$.

Let us revisit the examples.

(1) Let $f(z) = \frac{e^z - 1}{z}$. Then f has an isolated singularity at $z_0 = 0$. Let R > 0 be any real number. Note that in D(0, R), we have

$$e^{z} - 1 = \left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right) - 1 = \sum_{n=1}^{\infty} \frac{z^{n}}{n!}.$$

Define $F(z) := \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}$. Then F is holomorphic on D(0, R). (Why?) Hence on D(0, R), we have

$$zF(z) = z\left(\sum_{n=1}^{\infty} \frac{z^{n-1}}{n!}\right) = \sum_{n=1}^{\infty} \frac{z^n}{n!}.$$

Hence $zF(z) = e^z - 1$. For $z \neq 0$, in particular on $D(0,R) \setminus \{0\}$, we have

$$F(z) = \frac{e^z - 1}{z} = f(z).$$

Note that if an isolated singularity z_0 of f is a removable singularity, then $\lim_{\substack{z \to z_0 \\ z \neq z_0}} f(z)$ exists.

(2) Let $g(z) = \frac{\cos(z)}{z}$. Then g has an isolated singularity at 0. Note that $\cos(0) = 1$. We know that $\cos(z)$ is a continuous function and hence there exists R > 0 such

that on D(0,R), $|\cos(z)| < M$ for some M > 0. Observe that,

$$\lim_{z \to 0} \left| \frac{\cos(z)}{z} \right| = \infty.$$

If 0 were to be a removable singularity, $\lim_{z\to 0} \left| \frac{\cos(z)}{z} \right|$ should exists. Hence 0 is not a removable singularity.

(3) Let $h(z) = e^{\sqrt{1-z}}$. Then h has an isolated singularity at 1. Let $z_n = 1 - \frac{1}{2\pi i n}$, so that $z_n \longrightarrow 1$ as $n \longrightarrow \infty$. Then

$$h(z_n) = e^{\frac{1}{1 - \left(1 - \frac{1}{2\pi i n}\right)}} = e^{2\pi i n} = 1.$$

Hence $\lim_{n\to\infty}h(z_n)=1$. Let $z_n'=1-\frac{1}{2\pi\,i\,n+\frac{\pi\,i}{2}}$. Then $z_n'\longrightarrow 1$ as $n\longrightarrow \infty$. Now,

$$h(z'_n) = \exp\left(\frac{1}{1 - \left(1 - \frac{1}{2\pi i n + \frac{\pi i}{2}}\right)}\right) = \exp\left(2\pi i n + \frac{\pi i}{2}\right) = i.$$

Here, $\lim_{n\to\infty} h(z_n') = i$. Hence h does not have a removable singularity at z = 1.

(Refer Slide Time: 22:07)

Let Zo be an resoluted singularity of a fin 3
i.e. 3 R>0 s.t. g is hold on D(Zo, R)\{Zoy. Thun
Z is a nemovable singularity if and only if I is
locally bdd. around 20. (i.e. 3 470 0 M>0 &+ 3(2) ≤ M + ≥ ∈ D(20,4) ~ {205).

THEOREM 2 (Riemann Removable Singularity Theorem). Let z_0 be an isolated singularity of a function f, i.e., there exists R > 0 such that f is holomorphic on $D(z_0, R) \setminus \{z_0\}$. Then f has a removable singularity at z_0 if and only if f is locally bounded around z_0 (i.e. there exist $\epsilon > 0$ and M > 0 such that $|f(z)| \leq M$ for each $z \in D(z_0, \epsilon) \setminus \{z_0\}$).

PROOF. (\Rightarrow) Assume that f has a removable singularity at z_0 . Then there exists a holomorphic function g on $D(z_0, R)$ that agrees with f on $D(z_0, R) \setminus \{z_0\}$ and since g is continuous at z_0 , g is bounded in a neighborhood $D(z_0, \epsilon)$ of z_0 . Hence f is bounded in $D(z_0, \epsilon) \setminus \{z_0\}$.

(⇐) Let us now assume that f is locally bounded in a neighborhood $D(z_0, R) \setminus \{z_0\}$. Define $h: D(z_0, R) \longrightarrow \mathbb{C}$ by

$$h(z) := \begin{cases} (z - z_0) f(z), & z \in D(z_0, R) \setminus \{z_0\} \\ 0, & z = z_0. \end{cases}$$

Then h is continuous at z_0 (verify). If h was holomorphic on $D(z_0, R)$, then there exists a power series expansion of h on $D(z_0, R)$ given by

$$h(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

and since $h(z_0) = 0$, we have

$$h(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n.$$

That is, on $D(z_0, R)$ we have,

$$h(z) = (z - z_0) \left(\sum_{n=1}^{\infty} a_n (z - z_0)^{n-1} \right)$$

Define $g(z) := \sum_{n=1}^{\infty} a_n (z - z_0)^{n-1}$. Then on $D(z_0, R) \setminus \{z_0\}$, we have

$$h(z) = (z - z_0)f(z) = (z - z_0)g(z) \implies f(z) = g(z).$$

Hence f has a removable singularity at z_0 .

(Refer Slide Time: 35:02)

Claim: *h* is holomorphic on $D(z_0, R)$.

We shall use Morera's theorem for proving above claim.

If a triangular curve T satisfies $z_0 \not\in \hat{T}$, then T is hull homotopic and we have $\int_T h = 0$. Let us consider the case when z_0 is a vertex of $T = \gamma_{z_0 \to z_1 \to z_2 \to z_0}$, where $z_1, z_2 \in D(z_0, R)$. Let $d = \left| \gamma_{z_0 \to z_1 \to z_2 \to z_0} \right|$. Now if $w_1 \in \gamma_{z_0 \to z_1}$ and $w_2 \in \gamma_{z_2 \to z_0}$, then by Cauchy's theorem we have

$$\int_{\gamma_{w_1\to z_1\to z_2\to w_2\to w_1}} h(z)dz = 0.$$

Hence,

$$\int_{T} h(z)dz = \int_{\gamma_{z_{0} \to w_{1} \to w_{2} \to z_{0}}} h(z)dz + \int_{\gamma_{w_{1} \to z_{1} \to z_{2} \to w_{2} \to w_{1}}} h(z)dz$$

$$= \int_{\gamma_{z_{0} \to w_{1} \to w_{2} \to z_{0}}} h(z)dz.$$

Since h is continuous, given $\epsilon > 0$, let $\delta > 0$ be such that $|h(w) - h(z_0)| < \frac{\epsilon}{d}$, whenever $|w - z_0| < \delta$. But $h(z_0) = 0$, then $|h(w)| < \frac{\epsilon}{d}$, whenever $|w - z_0| < \delta$.

Now pick w_1, w_2 above such that $\hat{\gamma}_{z_0 \to w_1 \to w_2 \to z_0} \subseteq D(z_0, \delta)$. Then,

$$\left| \int_{T} h(z) dz \right| = \left| \int_{\gamma_{z_0 \to w_1 \to w_2 \to z_0}} h(z) dz \right| \le \frac{\epsilon}{d} \left| \gamma_{z_0 \to w_1 \to w_2 \to z_0} \right| = \epsilon.$$

(Refer Slide Time: 44:27)

Hence $\left| \int_T h(z) dz \right| < \epsilon$. Since the ϵ was arbitrary, we have $\int_T h(z) dz = 0$.

Now let us consider the case where z_0 is an edge of T. If $T = \gamma_{z_1 \to z_2 \to z_3 \to z_1}$ and without loss of generality, let $z_0 \in \gamma_{z_1 \to z_2}$. Then,

$$\int_{T} h(z)dz = \int_{\gamma_{z_{1} \to z_{0} \to z_{3} \to z_{1}}} h(z)dz + \int_{\gamma_{z_{2} \to z_{3} \to z_{0} \to z_{2}}} h(z)dz.$$

But we have already proved the case where z_0 is a vertex of the triangle. Hence,

$$\int_{\gamma_{z_1 \to z_0 \to z_3 \to z_1}} h(z) dz = 0, \quad \int_{\gamma_{z_2 \to z_3 \to z_0 \to z_2}} h(z) dz = 0.$$

Therefore,

$$\int_T h(z) = 0.$$

Finally, if z_0 is in the interior of \hat{T} , where $T = \gamma_{z_1 \to z_2 \to z_3 \to z_1}$. Here also we can apply the case where z_0 is a vertex by decomposing the integral $\int_T h(z) dz$ as

$$\int_{T} h(z)dz = \int_{\gamma_{z_{1} \to z_{0} \to z_{3} \to z_{1}}} h(z)dz + \int_{\gamma_{z_{2} \to z_{0} \to z_{1} \to z_{2}}} h(z)dz + \int_{\gamma_{z_{3} \to z_{0} \to z_{2} \to z_{3}}} h(z)dz.$$

But each of the integral in the RHS is 0, hence $\int_T h(z) dz = 0$.