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Singularities of a Holomorphic Function

Often times we are interested in studying functions f which are defined and holomor-
phic on a set Q\ S where the set S is called the set of singularities of f. Here we will
be discussing the notion of singularities of a holomorphic function. Singularities come
in varying levels of severity and we will be exploring them one by one. Let us begin by
defining what is meant by a singularity of a holomorphic function.
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DEFINITION 1 (Isolated Singularity). We say that a point z is an isolated singularity

of a function f if f is holomorphic on D(zg, R) \ {zo} for some R > 0.

EXAMPLE 1.
Z

() Let f(2) = &

on C\ {0}.



cos(z)
(2) Let g(2) =

on C\ {0}.

1
(3) Let h(z) =el—z onC\ {1}.

Here the functions f and g have isolated singularity at zo = 0 and the function h has

an isolated singularity at zg = 1.

DEFINITION 2 (Removable Singularity). Let zo be an isolated singularity of a holo-

morphic function f, i.e., there exists an R > 0 such that f is holomorphic on D(zy, R) \

{zo}. We say that z, is removable singularity of f if there exists a function g holomorphic

on D(zp, R) and such that f(z) = g(z) on D(zy, R) \ {z}.

Let us revisit the examples.
z_

1
(1) Let f(2) = . Then f has an isolated singularity at zp = 0. Let R > 0 be any

real number. Note that in D(0, R), we have

n=0 n!
0o ~h—1
Define F(z) := ), s Then F is holomorphic on D(0, R). (Why?)
n=1 .

Hence on D(0, R), we have

oo h—1

zF(z):z(Z

n=1

=S
= n
Hence zF(z) = e* — 1. For z # 0, in particular on D(0, R) \ {0}, we have

Z_

1
F(z) = = f(2).

Note that if an isolated singularity zj of f is aremovable singularity, then Zhnzl f(2)
<0

Z#20
exists.

(2) Let g(z) = L Then g has an isolated singularity at 0. Note that cos(0) = 1.
z

We know that cos(z) is a continuous function and hence there exists R > 0 such



that on D(0, R), | cos(z)| < M for some M > 0. Observe that,

cos(z)

z—0 z

cos(z) . .
should exists. Hence 0 is not

If 0 were to be a removable singularity, lin(l) '
z— z

aremovable singularity.
1

(3) Let h(z) = el —z. Then h has an isolated singularity at 1.

1
Letz,=1-———sothat z, — 1 as n — oo. Then
2min

1

1 ‘
h(z,) = el™ (1- ﬁ) = 2Tin — 1.

Hence lim h(z,) =1.
n—o0

Letz,=1-———. Then z;, — 1 as n — oco. Now,
2nin+ %
, 1 . i .
h(z,) =exp =exp|2win+ —|=1.
1-|1- —— 2
2min+ %

Here, lim h(z;,t) = i. Hence h does not have a removable singularity at z = 1.
n—oo
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THEOREM 2 (Riemann Removable Singularity Theorem). Let zg be an isolated singu-
larity of a function f, i.e., there exists R > 0 such that f is holomorphic on D(zy, R) \ {z}.
Then f has a removable singularity at zy if and only if f is locally bounded around z (i.e.

there existe >0 and M > 0 such that | f (z)| < M for each z € D(zy,€) \ {zo}).

PROOE. (=) Assume that f has a removable singularity at zp. Then there exists a
holomorphic function g on D(zy, R) that agrees with f on D(zg, R) \ {zo} and since g is
continuous at zy, g is bounded in a neighborhood D(z,€) of zy. Hence f is bounded in
D(z9,€) \ {zo}.

(<) Let us now assume that f is locally bounded in a neighborhood D(z, R) \ {z}.

Define h: D(zp, R) — C by

(z—2z0) f(2), z € D(zp, R) \ {zo}
h(z) :=
0, zZ= 2.

Then h is continuous at zy (verify). If i was holomorphic on D(zy, R), then there exists a

power series expansion of i on D(zy, R) given by

h(z)= ) an(z—zp)"
n=0



and since h(zg) =0, we have

h(z) = Z an,(z—zo)".

n=1

That is, on D(zy, R) we have,

h(z) = (z—20) | Y an(z—20)"""

n=1

Define g(z) := OZO an(z—z0)""!. Then on D(zy, R) \ {zo}, we have
n=1
h(z) = (z—z0) f(2) = (z— 20)g(2) = [(2) = g(2).

Hence f has a removable singularity at z.
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Claim: £ is holomorphic on D(zy, R).

We shall use Morera’s theorem for proving above claim.
If a triangular curve T satisfies zg ¢ T, then T is hull homotopic and we have [ h = 0.
Let us consider the case when z is a vertex of T =y, —z,—z, Where z1,2; €

D(z0,R). Letd = |yzy—z—2y—z|- Now if w; € yz—, and w; € y;,— 4, then by Cauchy’s
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theorem we have

f h(z)dz =0.
Y

W) —21—2—wr—wp

Hence,

fh(z)dz:f h(z)dz+f h(z)dz
T Yzg—wi—~wa—z2g Y

wy1—2z1——wy—wy
= f h(z)dz.
Yzg— w1 —wo—zg

Since h is continuous, given € > 0, let 6 > 0 be such that |h(w) — h(zp)| < 2, whenever
|lw— zg| < 6. But h(zg) =0, then |h(w)| < 2, whenever |w — zg| < 6.

Now pick wy, w, above such that ¥, 1, — w,—z, € D(20,6). Then,

€
S_|’)/z — W1 — Wr— Z | €.
d 0 1 2 0

f h(2)dz f h2)dz
T Yzg—wi—wa—zg
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Hence

I
S

< €. Since the € was arbitrary, we have f h(z)dz
T

f h(z)dz
T
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Now let us consider the case where zg isan edge of T. If T =y, .z, 2,2, and with-

out loss of generality, let zp € y;,—,. Then,

f h(z)dz :f
T Y

But we have already proved the case where z; is a vertex of the triangle. Hence,

J

h(Z)dZ+f h(z)dz.

Z]1 202321 y224>234>204>22

h(z)dz =0, f h(z)dz =0.
Y

22TE3 TR TR

f h(z) =0.
T

Finally, if zj is in the interior of T, where T = Y z1—z2,—23—2z - Here also we can apply the

2174043741

Therefore,

case where z is a vertex by decomposing the integral [} h(z)dz as

f h(z)dz :f
T Y

But each of the integral in the RHS is 0, hence f h(z)dz =0. O
T

h(z)dz+f

YZ2—>Z0—>Z1—>Z2

h(Z)dZ+f h(z)dz.

21202321 YZ3—~20—~22—'23



