Complex Analysis

Prof. Pranav Haridas

Kerala School of Mathematics

Lecture No - 32

Problem Session

PROBLEM 1. Let p be a polynomial of degree n with complex coefficients. Suppose the roots of the polynomial p are contained in D(0,R) for large R. Then prove that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{p'(z)}{p(z)} dz = n$$

where $\gamma(t) = Re^{it}$ for $t \in [0, 2\pi]$.

SOLUTION 1. By fundamental theorem of algebra, we have

$$p(z) = a_n(z - z_1) \cdots (z - z_n).$$

Now,

$$p'(z) = \sum_{j=1}^{n} a_n(z-z_1) ... (z-z_j) ... (z-z_n),$$

where $\widehat{(z-z_j)}$ means $(z-z_j)$ does not appear in the expression.

Away from $z_1, ..., z_n$, we have the function,

$$\frac{p'(z)}{p(z)} = \frac{\sum_{j=1}^{n} a_n(z - z_1) \dots \widehat{(z - z_j)} \dots (z - z_n)}{a_n(z - z_1) \dots (z - z_n)}$$
$$= \sum_{j=1}^{n} \frac{1}{z - z_j}.$$

(Refer Slide Time: 04:50)

Hence,

$$\int_{\gamma} \frac{p'(z)}{p(z)} dz = \int_{\gamma} \sum_{j=1}^{n} \frac{1}{z - z_{j}} dz$$

$$= \sum_{j=1}^{n} \int_{\gamma} \frac{dz}{z - z_{j}}$$

$$= \sum_{j=1}^{n} W_{\gamma}(z_{j})$$

$$= n.$$

PROBLEM 2. Let $f:\Omega \longrightarrow \mathbb{C}$ be a non-constant holomorphic function defined on an open set Ω . Suppose $a_1,a_2,...,a_n$ be points in Ω such that $f(a_i)=\alpha$ for some $\alpha\in\mathbb{C}$. Let γ be a closed continuous differentiable curve which is null homotopic and such that $a_j\not\in\gamma$. Then prove that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - \alpha} dz = \sum_{j=1}^{n} m_j W_{\gamma}(a_j)$$

where m_j are positive integers such that $f(z) - \alpha = (z - a_j)^{m_j} g_j(z)$, where $g_j(a_j) \neq 0$.

SOLUTION 2. We have

$$f(a_i) = \alpha$$
 for $j = 1, 2, ..., n$.

If $h(z) = f(z) - \alpha$, then $h(a_j) = 0$ for j = 1, 2, ..., n. Hence we have,

$$h(z) = (z - a_1)^{m_1} g_1(z).$$

Also,

$$h(a_2) = 0 \implies g_1(z) = (z - a_2)^{m_2} g_2(z).$$

 $h(a_n) = 0 \implies g_{n-1} = (z - a_n)^{m_n} g(z).$

i.e., $h(z) = (z-a_1)^{m_1} \cdots (z-a_n)^{m_n} g(z)$, where g does not vanish in Ω . Then in $\Omega \setminus \{a_1, a_2, \dots, a_n\}$,

$$\int_{\gamma} \frac{h'(z)}{h(z)} dz = \int_{\gamma} \frac{f'(z)}{f(z) - \alpha} dz.$$

Now it is left as an exercise to the reader to verify that

$$\frac{h'(z)}{h(z)} = \frac{m_1}{(z-a_1)} + \frac{m_2}{(z-a_2)} + \dots + \frac{m_n}{(z-a_n)} + \frac{g'(z)}{g(z)}.$$

(Refer Slide Time: 14:02)

$$h(z) = (z-a_1)^{m_1} \dots (z-a_n)^{m_n} g(z).$$

$$g(z) \text{ does not vanish in } \Omega. \text{ Then in } \Omega \setminus \{a_1,\dots,a_n\}$$

$$\int \frac{h'(z)}{h(z)} = \int \frac{1}{3}(z) dz$$

$$\int \frac{h'(z)}{h(z)} = \int \frac{1}{3}(z) dz$$

$$\int \frac{h'(z)}{h(z)} dz = \int \frac{1}{3}(z-a_1)^{m_1} \dots (z-a_n)^{m_n} g(z)$$

$$\int \frac{h'(z)}{h(z)} dz = \int \frac{1}{3}(z-a_1)^{m_1} \frac{1}{3}(z-a_n) dz$$

$$\int \frac{h'(z)}{h(z)} dz = \int \frac{1}{3}(z-a_1)^{m_1} \frac{1}{3}(z-a_1) dz$$

Now,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'(z)}{h(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \left(\frac{m_1}{(z - a_1)} + \frac{m_2}{(z - a_2)} + \dots + \frac{m_n}{(z - a_n)} + \frac{g'(z)}{g(z)} \right) dz$$

$$= \frac{1}{2\pi i} \left(m_1 \int_{\gamma} \frac{dz}{(z - a_1)} + m_2 \int_{\gamma} \frac{dz}{(z - a_2)} + \dots + m_n \int_{\gamma} \frac{dz}{(z - a_n)} + \int_{\gamma} \frac{g'(z)}{g(z)} dz \right).$$

By Cauchy's theorem, we have

$$\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$$

Also,

$$\frac{m_j}{2\pi i} \int_{\gamma} \frac{dz}{(z-a_j)} = m_j W_{\gamma}(a_j) \qquad \text{for } j=1,2...,n.$$

Hence

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)-\alpha}dz=\frac{1}{2\pi i}\int_{\gamma}\frac{h'(z)}{h(z)}dz=\sum_{j=1}^{n}m_{j}W_{\gamma}(a_{j}).$$

PROBLEM 3. Let Ω be an open connected set containing the origin and $f:\Omega\longrightarrow\mathbb{C}$ be holomorphic such that $f'(0)\neq 0$. Then prove that there exists a neighborhood U of 0 and a function g holomorphic on U such that

$$f(z^n) = f(0) + (g(z))^n$$
 for $n > 0$.

SOLUTION 3. Let us assume n > 1. Put $h(z) = f(z^n) - f(0)$. Then $h'(z) = f'(z^n) (nz^{n-1})$ and hence h'(0) = 0. Now we are interested in finding the order of zero of h at 0. That is, by Leibniz rule,

$$\begin{aligned} \frac{d^k}{dz^k}(h'(z))\bigg|_{z=0} &= \frac{d^k}{dz^k} \left(f'(z^n) \left(nz^{n-1}\right)\right)\bigg|_{z=0} \\ &= \sum_{\ell=0}^k \binom{k}{\ell} \frac{d^\ell}{dz^\ell} \left(f'(z^n)\right) \frac{d^{k-\ell}}{dz^{k-\ell}} \left(nz^{n-1}\right)\bigg|_{z=0}. \end{aligned}$$

Thus, $h^{k+1}(0) = 0$ for k < n-1. In other words, for k < n, we have $h^k(0) = 0$.

Let us now compute $h^n(0)$. By the computation above,

$$h^{n}(0) = f'(0)n! \implies h^{n}(0) \neq 0.$$

Hence $h(z) = z^n \phi(z)$, where $\phi(0) \neq 0$. By a theorem proved earlier, we have

$$h(z) - h(0) = (g(z))^n$$

for some function g holomorphic in a neighborhood of 0.

(Refer Slide Time: 24:18)

Hence,

$$f(z) - f(0) = (g(z))^n.$$

PROBLEM 4. Let $f:\Omega \longrightarrow \mathbb{C}$ be a non-constant holomorphic function on an open connected set Ω . Then |f(z)| does not attain a maximum in Ω .

SOLUTION 4. Let $z_0 \in \Omega$. By open mapping theorem, $f(\Omega)$ is and hence $f(z_0)$ is an interior point. Let r > 0 be such that $\overline{D(f(z_0), r)} \subset f(\Omega)$.

Suppose $f(z_0) = Re^{i\theta}$. Then for 0 < s < r, $f(z_0) + se^{i\theta} \in D(f(z_0), r)$. Now,

(1)
$$\left| f(z_0) + se^{i\theta} \right| = \left| Re^{it} + se^{it} \right| = R + s > |f(z_0)|.$$

Since $D(f(z_0), r) \subseteq \Omega$, there exists $w \in \Omega$ such that $f(w) = f(z_0) + se^{i\theta}$. By (1), we have $|f(w)| > |f(z_0)|$. Since the choice of z_0 was arbitrary, for any point $z \in \Omega$, we can get hold of a $w \in \Omega$ with |f(w)| > |f(z)|. Hence the maximum cannot be attained in Ω .