Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 30 Open Mapping Theorem

In this lecture we will explore the local behavior of a non-constant holomorphic function f defined on an open connected set Ω . We will prove that given a point $z_0 \in \Omega$ there exists a neighborhood U of z_0 such that in the punctured neighborhood $U \setminus \{z_0\}$, our function f is an m to 1 mapping for some $m \in \mathbb{N}$.

We will come to that. But, before that, let us prove a special case of the inverse function theorem which states that, if the derivative of the function f does not vanish at a point z_0 , then the function f is locally invertible in a neighborhood of z_0 and further we have a holomorphic inverse.

Let us begin this lecture by proving a preparatory lemma which is needed to prove the inverse function theorem.

(Refer Slide Time: 00:59)

G is continuous on $\Omega \times \Omega$. They Proof: We shall prove cont. on the pts. Z= w. Given $Z_0 \in \Omega$, trince Z' is continuous, we have given 270, an YOO at for ZE D(Zo, r), we 12'(2) - 2'(2) / 2 2. have 5/5 2 (**)

LEMMA 1. Let $f : \Omega \longrightarrow \mathbb{C}$ be a holomorphic function on an open set $\Omega \subseteq \mathbb{C}$. Then define $G : \Omega \times \Omega \longrightarrow \mathbb{C}$ given by

$$G(z,w) := \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{when } z \neq w \\ f'(z) & \text{when } z = w. \end{cases}$$

Then G is continuous on $\Omega \times \Omega$ *.*

PROOF. Note that on the points $(z, w) \in \Omega \times \Omega$ where $z \neq w$, continuity of *G* is trivial.

We shall prove the continuity of *G* on the points z = w. Given $z_0 \in \Omega$, since f' is continuous, if given an $\epsilon > 0$, we have an r > 0 such that for $z \in D(z_0, r)$, we have $|f(z) - f(z_0)| < \epsilon$.

Pick $z, w \in D(z_0, r)$ where $z \neq w$. Let $\gamma(t) = (1 - t)z + tw$ for $t \in [0, 1]$. Notice that $\gamma'(t) = w - z$. Then,

$$\int_0^1 f'(\gamma(t)) dt = \frac{1}{w-z} \int_0^1 f'(\gamma(t)) \gamma'(t) dt$$
$$= \frac{1}{w-z} \int_{\gamma} f'(z) dz$$
$$= \frac{f(w) - f(z)}{w-z}$$
$$= G(z, w).$$

Consider

$$|G(z,w) - G(z_0,z_0)| = \left| \int_0^1 f'(\gamma(t)) dt - \int_0^1 f'(z_0) dt \right|$$
$$= \left| \int_0^1 \left(f'(\gamma(t)) - f'(z_0) \right) dt \right|$$
$$\leq \epsilon.$$

Hence *G* is continuous at $(z_0, z_0) \in \Omega \times \Omega$.

THEOREM 2. Let $\Omega \subseteq \mathbb{C}$ be an open set and $f : \Omega \longrightarrow \mathbb{C}$ be a holomorphic function. Suppose $z_0 \in \Omega$ be such that $f'(z_0) \neq 0$. Then there exists a neighborhood U of z_0 in Ω such

that $f \upharpoonright_U$ is injective. Furthermore, V = f(U) is an open set and the inverse $g : V \longrightarrow U$ of f is holomorphic.

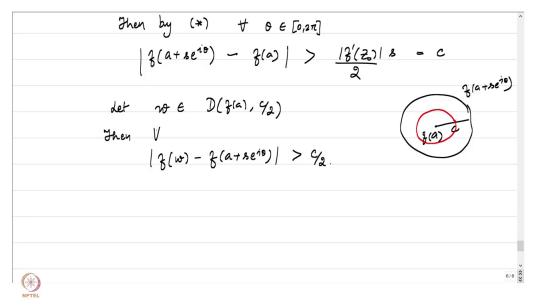
PROOF. Since $f'(z_0) \neq 0$, let $\epsilon = \frac{|f'(z_0)|}{2}$. By Lemma 1, there exists a neighborhood U of z_0 such that for $z, w \in U$ and $z \neq w$, we have

$$\left|\frac{f(z) - f(w)}{z - w} - f'(z_0)\right| < \frac{\left|f'(z_0)\right|}{2}$$
$$\frac{\left|f'(z_0)\right|}{2} > \left|f'(z_0)\right| - \left|\frac{f(z) - f(w)}{z - w}\right|$$

(1)
$$\implies |f(z) - f(w)| > \frac{\left|f'(z_0)\right|}{2}|z - w|.$$

If $z \neq w$ we have |f(z) - f(w)| > 0. That is $f(z) \neq f(w)$. Hence $f \upharpoonright U$ is injective.

(Refer Slide Time: 14:33)



Next we want to show that *V*, the image of *U* under *f*, is an open set. Let $a \in U$. Then there exists s > 0 such that $\overline{D(a, s)} \subseteq U$. Then by (1), for every $\theta \in [0, 2\pi]$,

$$\left| f\left(a + se^{i\theta}\right) - f(a) \right| > \frac{|f'(z_0)|s}{2} = c$$

where *c* is a positive constant. That is $f(a + se^{i\theta})$ is outside the disc of radius *c* around f(a) for every $\theta \in [0, 2\pi]$.

Let $w_0 \in D(f(a), \frac{c}{2})$. Then for every $\theta \in [0, 2\pi]$, we have,

$$\left|f(w_0) - f\left(a + se^{i\theta}\right)\right| > \frac{c}{2}.$$

Suppose there does not exists $z \in U$ such that $f(z) = w_0$. Then consider $f(z) - w_0$, which is holomorphic and non-vanishing on U. Hence $g(z) = \frac{1}{f(z) - w_0}$ is holomorphic on U. By maximum principle applied to g and compact set $\overline{D(a, s)}$,

$$|g(z)| \leq \sup_{\theta \in [0,2\pi]} \left| g\left(a + se^{i\theta} \right) \right|$$
 for all $z \in D(a,s)$.

Hence,

$$\frac{1}{|f(z) - w_0|} \le \inf_{\theta \in [0, 2\pi]} \frac{1}{|f(a + se^{i\theta}) - w_0|}$$
$$\implies \inf_{\theta \in [0, 2\pi]} \left| f\left(a + se^{i\theta}\right) - w_0 \right| \le |f(z) - w_0|$$

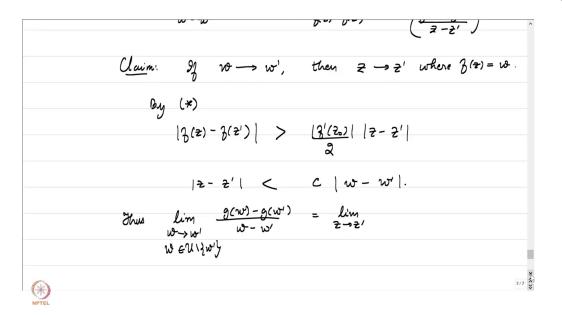
Since for each $\theta \in [0, 2\pi]$, $\left| f(w_0) - f(a + se^{i\theta}) \right| > \frac{c}{2}$, we have,

$$\inf_{\theta \in [0,2\pi]} \left| f(w_0) - f\left(a + se^{i\theta}\right) \right| \ge \frac{c}{2}$$

Then,

$$|f(a) - w_0| \ge \frac{c}{2}$$

which is a contradiction to our choice of $w_0 \in D(f(a), \frac{c}{2})$. Hence f(a) is an interior point. (Refer Slide Time: 25:22)



Since $a \in U$ was arbitrary, V = f(U) is an open set. Therefore $f \upharpoonright_U : U \longrightarrow V$ is bijective. Let $g : V \longrightarrow U$ be its inverse. Now it remains to show that this map g is holomorphic on V.

Let $w' \in V$. For $w \in V$ and $w \neq w'$, let $z, z' \in U$ be such that f(z) = w, f(z') = w',

$$\frac{g(w) - g(w')}{w - w'} = \frac{z - z'}{f(z) - f(z')} = \frac{1}{\left(\frac{f(z) - f(z')}{z - z'}\right)}$$

Claim: If $w \to w'$, then $z \to z'$ where f(z) = w.

By (1),

$$|f(z) - f(z')| > \frac{|f'(z_0)|}{2}|z - z'|$$
$$|z - z'| < C|w - w'|$$

where $C = \frac{2}{|f(z_0)|}$. Then the claim is verified, if $w \to w'$, then $z \to z'$. Thus,

$$\lim_{\substack{w \to w' \\ w \in V \setminus \{w'\}}} \frac{g(w) - g(w')}{w - w'} = \lim_{\substack{z \to z' \\ z \in U \setminus \{z'\}}} \frac{1}{\left(\frac{f(z) - f(z')}{z - z'}\right)} = \frac{1}{f'(z')}$$

Hence g is holomorphic on V.

EXAMPLE 3. Consider the map $\pi_m : \mathbb{C} \longrightarrow \mathbb{C}$ given by $\pi_m(z) = z^m$ where *m* is a positive integer. Then, for $z_0 \neq 0$, $\pi'_m(z_0) \neq 0$. Then by Theorem 2, π_m is a local biholomorphic function, i.e, π_m is bijective holomorphic function on a neighborhood of each non-zero point with a holomorphic inverse function.

In particular, If *V* is an open set which does not contain the origin, then $U = \pi_m(V)$ is also an open set.

Recall that if $w = re^{i\theta} \neq 0$, then $z^m = w$ has roots given by $z_k = r^{1/m}e^{i\left(\frac{\theta}{m} + \frac{2\pi k}{m}\right)}$, k = 0, 1, ..., m-1. Hence $\pi_m(D(0, r)) = D(0, r^m)$.

THEOREM 4 (Local Behaviour of Holomorphic Functions). Let $f : \Omega : \longrightarrow \mathbb{C}$ be a nonconstant holomorphic function on an open connected set Ω . Let $z_0 \in \Omega$ and $w_0 = f(z_0)$. Then there exists a neighborhood U of z_0 and bijective holomorphic function ϕ on U such that $f(z) = w_0 + (\phi(z))^m$ for $z \in U$ and some integer m > 0. Moreover ϕ maps U onto D(0, r) for some r > 0.

(Refer Slide Time: 38:51)

$\varphi'(z_0) = e^{\frac{h(z_0)}{m}} \neq 0.$ det u' be a nghd of z_0 in $D(z_0, s)$ sit	Then $(a(2))^{m}$ $(2-2)^{m}$ $h(2)$ $(-1)^{m}$
det U'be a nghd of Zo in D(Zo, s) sit	$(\varphi^{(2)})^{m} = (2-2)^{m} e^{h^{(2)}} = (2-2)^{m} g^{(2)} = y^{(2)} - w^{(2)}$
det U'be a nghd of Zo in D(Zo, s) sit	$h(z_0)$
	$\varphi(2_{0}) = \psi + 0$
$\varphi _{\mathcal{U}}$ is injective $\varphi(\mathcal{U}')$ is an open set	$\varphi _{\mathcal{U}'}$ is injective $\varphi(\mathcal{U}')$ is an open set.

7

PROOF. Since $f(z_0) = w_0$, we know that $f(z) - w_0$ vanishes at z_0 . By using the factorization theorem,

$$f(z) - w_0 = (z - z_0)^m g(z)$$

for some m > 0 and such that $g(z_0) \neq 0$.

Let s > 0 be such that $g(z) \neq 0$ on $D(z_0, s)$. Since $D(z_0, s)$ is simply connected and g does not vanish on $D(z_0, s)$, there exists a holomorphic function h on $D(z_0, s)$ such that $g(z) = e^{h(z)}$ on $D(z_0, s)$.

Define ϕ : $D(z_0, s) \longrightarrow \mathbb{C}$ to be

$$\phi(z) = (z - z_0)e^{\frac{h(z)}{m}}.$$

Then

$$(\phi(z))^m = (z - z_0)^m e^{h(z)} = (z - z_0)^m g(z) = f(z) - w_0$$

Also note that $\phi'(z_0) \neq 0$. Let U' be a neighborhood of z_0 in $D(z_0, s)$ such that $\phi \upharpoonright_{U'}$ is injective and $\phi(U')$ is an open set. Since $\phi(z_0) = 0$, there exists r > 0 such that $D(0, r) \subseteq \phi(U')$. Define $U = \phi^{-1}(D(0, r))$.

On U, we have

$$f(z) - w_0 = \left(\phi(z)\right)^m.$$

Also ϕ is bijective and holomorphic on *U* with $\phi(U) = D(0, r)$.

Notice that $f(z) = w_0 + (\pi_m \circ \phi)(z)$, hence *f* is an *m* to 1 mapping on $U \setminus \{z_0\}$.

THEOREM 5 (Open Mapping Theorem). Let $f : \Omega \longrightarrow \mathbb{C}$ be a non-constant holomorphic function on an open connected set Ω . Then $f(\Omega)$ is an open set.

PROOF. Let $z_0 \in \Omega$ and $w_0 = f(z_0)$. By Theorem 4, there exists a neighborhood U of z_0 such that $f(z) = w_0 + (\phi)^m$ on U and such that $\phi(U) = D(0, r)$. Hence $\pi_m \circ \phi(U) = D(0, r^m)$. Then $f(U) = D(w_0, r^m) \implies w_0$ is an interior point of $f(\Omega)$. Therefore $f(\Omega)$ is open.