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Lecture – 3

Topology on the Complex Plane

In the last lecture, we defined a metric on the field of complex numbers. The metric was

defined using an absolute value, which was a natural extension of the notion of absolute

value on the field of real numbers. The absolute value turned out to be the square root

of the field norm and we remarked that because of this, it does not matter which copy of

the complex field that we work on, the analysis will be consistent.

(Refer Slide Time: 00:46)

Let us start by recalling the metric that we defined. Recall that the metric defined

on C is given by d(z, w) := |z − w |, z, w ∈ C. In this lecture, we will do a quick recap of

the familiar topological notions on the complex plane. The material will be something

which you would have already seen in multivariate real analysis course. The intention

is also to set the notations for the rest of this course. First thing to do is describing the

balls in C. For a point z0 ∈C and > 0, denote the ball of radius r around z0 to be D(z0,r ).

Recall that D(z0,r ) := {z ∈C : |z − z0| < r }. The D here is actually for disc, since balls in C
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are also called discs.

If we are to work with general metric space, which we will do sometimes in this lecture

itself, we will use the word B instead of D , which should mean the same thing.

(Refer Slide Time: 03:24)

A subset D ⊆C is said to be open if for every z ∈ D , ∃r > 0 such that D(z,r ) ⊆ D .

This can be restated in another way as, if every point in D is an interior point of D , we

say that D is open.

A subset F ⊆C is said to be closed if C, the complement of F , C\ F is open in C.

(Refer Slide Time: 04:54)
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A point z ∈C is said to be a limit point of a subset D ⊆C, if for every ε> 0,D(z,ε)∩D

contains a point other than z.

In a metric space, this is also the same as demanding that you have a sequence in D

converging to z, where the sequence consists of points other than z.

EXERCISE 1. A subset F ⊆C is closed if and only if it contains all its limit points.

(Refer Slide Time: 07:17)
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Properties of open sets

(1) C and ∅(empty set) are open subsets of C.

(2) If Ω1,Ω2, . . .Ωn are open sets in C, then Ω1 ∩Ω2 ∩ . . .Ωn are also open. That is

finite intersection of open sets is open.

(3) If {Ωα}α∈A is a collection of open sets of C, then
⋃
α∈A

Ωα is open in C.

Verification of these properties left as an exercise to the reader. Check that each of the

sets mentioned satisfy the definition of open set.

(Refer Slide Time: 09:26)

Hence we can say that the collection of all open sets on C form a topology on C.

Let D ⊆ C, we define the interior of D , denoted by Do, to be the union of all open

sets in C which are contained in D .

That is, interior of D , Do :=⋃
{Ω :Ω⊆ D andΩ is open in C}.

From the properties stated above, it is clear that Do is an open set.

We define closure of D to be the set, D :=⋂
{F : F ⊆ D and F is closed in C.

Using De Morgan’s law, we can say that the arbitrary intersection of closed sets will

again be a closed set. Hence D is a closed set. The interior is the biggest open set con-

tained in D and closure, D , is the smallest closed set which contains D .

(Refer Slide Time: 13:22)
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Let E ⊆ D . We say that E is dense in D , if the closure of E in D is D , where the closure

of E in D , in general metric space, is with respect to the collection of open and closed

sets in D with metric on D obtained by restricting the metric on C to D .

Anyway in the case of our complex plane, closure of E in D is the intersection of closure

of E in C and D .

(Refer Slide Time: 16:06)

A sequence {zn}n∈N in C is said to converge to z if |zn − z| −→ 0 as n −→∞.

LetΩ⊆C be open and a function, f :Ω−→C is said to be continuous if f −1(D) is open

inΩwhenever D is open in C. It is the same as saying that if there is a sequence {zn}n∈N
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inΩwhich converges to z inΩ, then f (zn) −→ f (z).

(Refer Slide Time: 17:55)

We know that if {zn}n∈N, {wn}n∈N are two convergent complex sequences, then

lim
n→∞(zn + wn) = lim

n→∞zn + lim
n→∞wn and lim

n→∞(zn × wn) = lim
n→∞zn × lim

n→∞wn . From here

we can conclude that the addition and multiplication operation on complex plane is

continuous. This can be checked by considering the triangle inequality and the fact that

|zw | = |z||w |.
(Refer Slide Time: 19:52)
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Also notice that lim
n→∞zn = lim

n→∞zn which tells us that conjugation is also a continuous

function, which follows form the observation that |z| = |z|.
Our next aim is to show that the field of complex number is complete. For that we use

the fact that R is complete.

If z = a + i b, then the absolute value of z, |z| =
p

a2 +b2. Then

|a|, |b| ≤
p

a2 +b2 ≤ |a|+ |b| =⇒ |Re(z)|, |Im(z)| ≤ |z| ≤ |Re(z)|+ |Im(z)|.
(Refer Slide Time: 23:05)
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Because of these inequalities, if {zn} is a sequence of complex numbers which con-

verges to z, then Re(zn) →Re(z), similarly Im(zn) → Im(zn).

We can say it another way also, that if {z} is sequence of complex numbers converges to

a point z ∈C if and only if Re(zn) →Re(z) and Im(zn) → Im(z).

COROLLARY 2. The field of complex number C is complete with respect to the metric

defined as above.

If {zn} is a Cauchy sequence, then {Re(zn)} and {Im(zn)} both are Cauchy and by the

completeness of R, there exist a,b such that Re(zn) → a and Im(zn) → b. Let z = a + i b.

Then zn → z. Hence every Cauchy sequence has a limit, therefore C is complete.

(Refer Slide Time: 26:25)
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Next important notion is connectedness. We may work with the general metric space

rather than C for defining the connectedness.

Let (X ,d) be metric space. We say that X is separated if there exist disjoint non-

empty open subsets U ,V of X such that X =U
⋃

V .

For example, let X ⊆C, X = D(0,1)∪D(4,1) and let us use the metric on C to restrict

it to X , then U = D(0,1) and V = D(4,1) is a separation.

Also, if we had taken closed discs instead of open discs, that is if X ′ = D(0,1)
⋃

D(4,1)

and look at a new metric space. Then again, the reader should verify that U = D(0,1),V =
D(4,1), that are not open in C, are open in X ′ in the subspace topology, then U ∩V =∅

and the union will give us X ′.Hence X ′ is also separated.

(Refer Slide Time: 32:10)
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We say that a metric space (X ,d) is connected if there does not exist a separation of

X .

We can reformulate the definition as, X is connected if and only if X does not contain

a proper subset which is both open and closed and simultaneously in X .

The examples we have mentioned above for the spaces that are separated, X = D(0,1)∪
D(4,1), we can see that D(0,1) is open and closed in X , since D(0,1) is open in C, under

subspace topology it is open in X and also the compliment of D(0,1) in X is an open set

in X , thus D(0,1) is closed. Similarly D(4,1) is both open and closed in X which implies

that X is separated. Similarly in the case of X ′, D(0,1) and D(4,1) are both open and

closed in X ′.

Example: X ⊆R is connected if and only if X is an interval.

(Refer Slide Time: 35:36)
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So, here we have given a characterization of how the connected sets in R behave. We

will not be able to give this kind of a characterization on the complex plane. However,

we will give an alternate description of how connected open sets in C will behave.

PROPOSITION 3. Let X ,Y are metric spaces and f : X −→ Y is a continuous function.

Then f (x) is connected if X is connected.

PROOF. The proof is by contradiction. Let Z = f (X ) ⊆ Y . Suppose Z is not con-

nected.Then Z = A
⋃

B where A,B are non-empty, open in Z and A∩B =∅.

Claim: f −1(A) and f −1(B) are open in X .

Since A = U ∩ Z , U open in Y , f −1(A) = f −1(U ), and f is continuous =⇒ f −1(U ) =
f −1(A) is open in X . Similarly f −1(B) is open in X . f is surjective onto Z and A,B are

non-empty =⇒ f −1(A), f −1(B) are non-empty. Also Z = A∪B =⇒ f −1(A)∪ f −1(B) = X

also f −1(A)∩ f −1(B) =∅. Then X is separated by f −1(A) and f −1(B) which is a contra-

diction to our assumption that X is connected. Hence f (X ) is connected. �

(Refer Slide Time: 41:47)
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A path in a metric space from a point x ∈ X to y ∈ X is a continuous map

γ : [0,1] −→ X such that γ(0) = x and γ(1) = y .

(Refer Slide Time: 42:36)

Example: Consider z ∈ D(0,1) and γ : [0,1] −→ C such that γ(t ) = t z. Then γ is a

straight line from 0 to z.

Let γ1 be a path from x to y and γ2 be a path from y to z in a metric space X . Define

σ(s) =

γ1(2s) if, s ∈ [0, 1
2 ]

γ2(2s −1) if, s ∈ [ 1
2 ,1]

Then σ is a continuous map from [0,1] to X such that σ(0) = x,σ(1) = z.

(Refer Slide Text: 46:44)
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THEOREM 4. A open subset Ω ⊆ C is connected if and only if there exists a path for

every pair of points z, w ∈Ω there exists a path from z to w.

PROOF. (⇐) Suppose Ω is separated. Then ∃U ,V such that Ω = U ∪V where U ,V

are non-empty open subsets of Ω. Let z ∈ U and w ∈ V . If there exists a path γ form

z to w , then γ : [0,1] −→ X is continuous and γ(0) = z and γ(1) = w . Then [0,1] =
f −1(U )

⋃
f −1(V ), which is a contradiction since [0,1] is connected. Therefore, there does

not exists a separation ofΩ, henceΩ is connected.

(⇒) Let us assume thatΩ is connected. Fix z0 ∈Ω. Let A := {z ∈Ω : ∃ a path from z to z0}.

Claim: A is open.

Let z ∈ A. Since Ω is open ∃r > 0 such that D(z,r ) ⊆Ω. Since z ∈ A, ∃ a path γ from z0

to z. For any w ∈ D(z,r ) consider the path γ1 : [0,1] −→Ω given by γ1(s) = (1− s)z + sw .

Then γ1 is a straight line path from z to w and is contained in D(z,r ). Define

σ(s) =

γ(2s) if, s ∈ [0, 1
2 ]

γ1(2s −1) if, s ∈ [ 1
2 ,1]

Hence σ is a path from z0 to w =⇒ w ∈ A =⇒ D(z,r ) ⊆ A =⇒ A is open.

Claim: A is closed.

Let z ∈ Ω \ A. Since Ω is open, we have r > 0 such that D(z,r ) ⊆ Ω. If D(z,r )∩ A 6= ∅,
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then ∃w ∈ D(z,r )∩ A. This would give a path from z0 to z through w contradiction to

our assumption that z ∈Ω\ A. Hence D(z,r )∩ A =∅ =⇒ Ω\ A is open =⇒ A is closed.

Hence A is both open and closed. Therefore either A = Ω or A = ∅. Since z0 ∈ A, A 6=
∅ =⇒ A =Ω. Thus any pair of points in a can be connected by a path. �


