Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture -3

Topology on the Complex Plane

In the last lecture, we defined a metric on the field of complex numbers. The metric was
defined using an absolute value, which was a natural extension of the notion of absolute
value on the field of real numbers. The absolute value turned out to be the square root
of the field norm and we remarked that because of this, it does not matter which copy of
the complex field that we work on, the analysis will be consistent.
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Let us start by recalling the metric that we defined. Recall that the metric defined
on C is given by d(z, w) := |z — wl,z, w € C. In this lecture, we will do a quick recap of
the familiar topological notions on the complex plane. The material will be something
which you would have already seen in multivariate real analysis course. The intention
is also to set the notations for the rest of this course. First thing to do is describing the
balls in C. For a point 2y € C and > 0, denote the ball of radius r around z, to be D(z, r).

Recall that D(zg,r) :={z€ C:|z— zo| < r}. The D here is actually for disc, since balls in C
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are also called discs.

If we are to work with general metric space, which we will do sometimes in this lecture
itself, we will use the word B instead of D, which should mean the same thing.
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A subset D < C is said to be open if for every z € D, 3r > 0 such that D(z,r) < D.
This can be restated in another way as, if every point in D is an interior point of D, we
say that D is open.

A subset F c C is said to be closed if C, the complement of F, C\ F is open in C.
(Refer Slide Time: 04:54)
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A point z € C is said to be a limit point of a subset D € C, if for every € > 0, D(z,e) N D
contains a point other than z.
In a metric space, this is also the same as demanding that you have a sequence in D

converging to z, where the sequence consists of points other than z.
EXERCISE 1. A subset F ¢ C is closed if and only if it contains all its limit points.
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Properties of open sets

(1) C and @ (empty set) are open subsets of C.
(2) If Q1,Q9,...Q, are open sets in C, then Q; NQ,nN...Q, are also open. That is
finite intersection of open sets is open.
(3) If{Qq}aea is a collection of open sets of C, then L€JAQa is openin C.
a
Verification of these properties left as an exercise to the reader. Check that each of the
sets mentioned satisfy the definition of open set.
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Hence we can say that the collection of all open sets on C form a topology on C.

Let D < C, we define the interior of D, denoted by D°, to be the union of all open
sets in C which are contained in D.
That is, interior of D, D° :=J{Q:Q < D and Q is open in C}.
From the properties stated above, it is clear that D° is an open set.

We define closure of D to be the set, D :=({F: F < D and F is closed in C.

Using De Morgan’s law, we can say that the arbitrary intersection of closed sets will
again be a closed set. Hence D is a closed set. The interior is the biggest open set con-
tained in D and closure, D, is the smallest closed set which contains D.
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Let E < D. We say that E is dense in D, if the closure of E in D is D, where the closure
of E in D, in general metric space, is with respect to the collection of open and closed

sets in D with metric on D obtained by restricting the metric on C to D.

Anyway in the case of our complex plane, closure of E in D is the intersection of closure

of Ein C and D.
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A sequence {z,},en in C is said to converge to z if |z, — z| — 0 as n — oo.
Let Q < C be open and a function, f: Q — C is said to be continuous if f (D) is open

in Q whenever D is open in C. It is the same as saying that if there is a sequence {z;} en
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in Q which converges to z in Q, then f(z,) — f(2).
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We know that if {z,} sen, {Wn} nen are two convergent complex sequences, then
lim (z,, + w,) = lim z, + lim w, and lim (z;, x w;) = lim z, x lim w;,. From here
n—oo n—oo n—oo n—oo n—oo n—oo
we can conclude that the addition and multiplication operation on complex plane is
continuous. This can be checked by considering the triangle inequality and the fact that
lzw| = |z]|wl.
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Also notice that ’}Elgo Zn = m which tells us that conjugation is also a continuous
function, which follows form the observation that |z| = | z|.
Our next aim is to show that the field of complex number is complete. For that we use
the fact that R is complete.
If z= a+ ib, then the absolute value of z, |z| = Va2 + b2. Then
lal,|bl < Va2 + D2 < |al + bl = |Re(2)],1Tm(2)| < |z < |Re(2)] + |Tm(2)].
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Because of these inequalities, if {z,} is a sequence of complex numbers which con-
verges to z, then Re(z,) — QRe(z), similarly Jm(z,) — Tm(z,).
We can say it another way also, that if {z; is sequence of complex numbers converges to

a point z € C if and only if Re(z,) — Re(z) and Im(z,) — Tm(z).

COROLLARY 2. The field of complex number C is complete with respect to the metric

defined as above.

If {z,} is a Cauchy sequence, then {¥i¢(z,)} and {Jm(z,)} both are Cauchy and by the
completeness of R, there exist a, b such that Re(z,) — a and Jm(z,) — b. Letz=a+ib.
Then z;,, — z. Hence every Cauchy sequence has a limit, therefore C is complete.
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Next important notion is connectedness. We may work with the general metric space
rather than C for defining the connectedness.

Let (X, d) be metric space. We say that X is separated if there exist disjoint non-
empty open subsets U, V of X such that X =UUV.

For example, let X < C, X = D(0,1) u D(4,1) and let us use the metric on C to restrict
itto X, then U =D(0,1) and V = D(4,1) is a separation.

Also, if we had taken closed discs instead of open discs, that is if X' = D(0,1) UD(4,1)

and look at a new metric space. Then again, the reader should verify that U = D(0,1),V =
D(4,1), that are not open in C, are open in X' in the subspace topology, then UNnV = &
and the union will give us X’.Hence X' is also separated.
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We say that a metric space (X, d) is connected if there does not exist a separation of
X.

We can reformulate the definition as, X is connected if and only if X does not contain
a proper subset which is both open and closed and simultaneously in X.
The examples we have mentioned above for the spaces that are separated, X = D(0,1) U
D(4,1), we can see that D(0, 1) is open and closed in X, since D(0,1) is open in C, under
subspace topology it is open in X and also the compliment of D(0,1) in X is an open set

in X, thus D(0,1) is closed. Similarly D(4, 1) is both open and closed in X which implies

that X is separated. Similarly in the case of X', D(0,1) and D(4,1) are both open and
closed in X'.
Example: X c R is connected if and only if X is an interval.
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So, here we have given a characterization of how the connected sets in R behave. We
will not be able to give this kind of a characterization on the complex plane. However,

we will give an alternate description of how connected open sets in C will behave.

PROPOSITION 3. Let X,Y are metric spaces and f : X — Y is a continuous function.

Then f(x) is connected if X is connected.

PROOE. The proof is by contradiction. Let Z = f(X) < Y. Suppose Z is not con-
nected.Then Z = AUB where A, B are non-empty, openin Z and AnB = .
Claim: f~!(A) and f~!(B) are open in X.
Since A=UnZ, U open in Y,f_l(A) = f‘l(U), and f is continuous = f‘l(U) =
f “1(A) is open in X. Similarly f “1(B) is open in X. f is surjective onto Z and A, B are
non-empty = f~!(A), f~1(B) are non-empty. Also Z= AUB = fl1(Auf 1B =X
also f~1(A)n f~1(B) = @. Then X is separated by f~!(A) and f~!(B) which is a contra-

diction to our assumption that X is connected. Hence f(X) is connected. U
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A path in a metric space from a point x € X to y € X is a continuous map
Y :10,1] — X such that y(0) = x and y(1) = y.
(Refer Slide Time: 42:36)
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Example: Consider z € D(0,1) and vy : [0,1] — C such that y(¢) = tz. Then y is a
straight line from 0 to z.

Let y; be a path from x to y and y» be a path from y to z in a metric space X. Define

y12s) if, s € [0, 3]
o(s) =

Y2(2s—1)if, s€ [3,1]

Then o is a continuous map from [0, 1] to X such that o(0) = x,0(1) = z.
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THEOREM 4. A open subset Q) < C is connected if and only if there exists a path for

every pair of points z, w € Q) there exists a path from z to w.

PROOE. (<) Suppose Q is separated. Then 3U,V such that Q = Uu V where U,V
are non-empty open subsets of Q. Let z € U and w € V. If there exists a path y form
z to w, then y : [0,1] — X is continuous and y(0) = z and y(1) = w. Then [0,1] =
f Ty f ~1(V), which is a contradiction since [0,1] is connected. Therefore, there does
not exists a separation of 2, hence Q is connected.

(=) Let us assume that Q is connected. Fix zyp € Q. Let A:= {z € Q: 3 a path from z to z}.
Claim: Ais open.

Let z € A. Since Q is open 3r > 0 such that D(z,r) € Q. Since z € A, 3 a path y from z;
to z. For any w € D(z, r) consider the path y; : [0,1] — Q given by y;(s) = (1 - s)z+ sw.

Then vy, is a straight line path from z to w and is contained in D(z, r). Define

y(2s) if, s€ [0, 1]
o(s) =

y1@2s—1)if, s€ [3,1]
Hence o is a path from zp to w = we A = D(z,r) € A = Aisopen.
Claim: A is closed.

Let z € Q\ A. Since Q is open, we have r > 0 such that D(z,r) € Q. If D(z,r)N A # &,
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then 3w € D(z,r) n A. This would give a path from zj to z through w contradiction to
our assumption that z€ Q\ A. Hence D(z,r) N A=0 = Q\ Ais open = A is closed.
Hence A is both open and closed. Therefore either A =Q or A= &. Since zp € A, A #

@ = A=Q. Thus any pair of points in a can be connected by a path. U



