Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 29 Winding Number

In the version of the Cauchy integral formula that we have proved, we have imposed a strict condition on the curve in the question. We demanded that in $\mathbb{C} \setminus \{z_0\}$, the curve is homotopic as closed curve to a circle centered at z_0 with radius r, for some r > 0. This is a bit stringent condition to impose on the curve and we would like to circumvent this condition. The route to getting a more general Cauchy integral formula is by introducing the notion of the winding number of a curve.

(Refer Slide Time: 00:54)

Winding number Let Y: [a,b] -> C be a closed curve and let Zo be a point not in the image of r. We define the winding number of r around z_o to be $W_r(z_o) := \frac{1}{2\pi i} \int \frac{dz}{z - z_o}$ 1/1 😤 *

DEFINITION 1 (Winding Number). Let $\gamma : [a, b] \longrightarrow \mathbb{C}$ be a closed curve and let $z_0 \in \mathbb{C} \setminus \gamma([a, b])$. We define the winding number of γ around z_0 to be

$$W_{\gamma}(z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}.$$

(Refer Slide Time: 02:33)

EXAMPLE 1. Let $\gamma_0 : [0, 2\pi] \longrightarrow \mathbb{C}$ be given by $\gamma_0(t) = z_0 + re^{it}$ for some r > 0. Then by Cauchy integral formula, we have

$$W_{\gamma_0}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = 1.$$

More generally, let $\gamma_1 : [0, 2\pi] \longrightarrow \mathbb{C}$ be given by $\gamma_1(t) = z_0 + re^{imt}$ for some r > 0 and $m \in \mathbb{N}$. Then we have $W_{\gamma_1}(z_0) = m$.

Let γ and σ be two closed curves in $\mathbb{C} \setminus \{z_0\}$ such that γ is homotopic as closed curves to a reparametrization of σ in $\mathbb{C} \setminus \{z_0\}$. Then by Cauchy's theorem, we have

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_{\sigma} \frac{dz}{z - z_0}.$$

Since $\frac{1}{z-z_0}$ is a holomorphic function on $\mathbb{C} \setminus \{z_0\}$,

$$W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = \frac{1}{2\pi i} \int_{\sigma} \frac{dz}{z - z_0} = W_{\sigma}(z_0).$$

PROPOSITION 2. Let $\gamma_0 : [a, b] \longrightarrow \mathbb{C}$ be a closed curve and z_0 be a point not in γ_0 . Suppose $\gamma_1 : [a, b] \longrightarrow \mathbb{C}$ be a closed curve such that

$$\left|\gamma_0(t)-\gamma_1(t)\right| < \left|\gamma_0(t)-z_0\right|.$$

Then $W_{\gamma_0}(z_0) = W_{\gamma_1}(z_0)$.

PROOF. Define $H: [0,1] \times [a,b] \longrightarrow \mathbb{C}$ by

$$H(s,t) = (1-s)\gamma_0(t) + s\gamma_1(t).$$

Then *H* is continuous function into \mathbb{C} and notice that at each point $s \in [0, 1]$, $\gamma_s : [a, b] \longrightarrow \mathbb{C}$ given by $\gamma_s(t) = H(s, t)$ is a closed curve. Hence *H* is a homotopy from γ_0 to γ_1 .

Claim: $z_0 \notin H([0,1] \times [a,b])$.

$$|H(s, t) - z_0| = |(1 - s)\gamma_0(t) + s\gamma_1(t) - z_0|$$

= $|s(\gamma_1(t) - \gamma_0(t)) + \gamma_0(t) - z_0|$
 $\ge |\gamma_0(t) - z_0| - s|\gamma_1(t) - \gamma_0(t)|$
 $\ge |\gamma_0(t) - z_0| - |\gamma_1(t) - \gamma_0(t)|$
 $> 0.$

Hence $H(s, t) \neq z_0$ for any $(s, t) \in [0, 1] \times [a, b]$. Therefore *H* is a homotopy of closed curves in $\mathbb{C} \setminus \{z_0\}$ from γ_0 to $\gamma_1 \implies W_{\gamma_0}(z_0) = W_{\gamma_1}(z_0)$.

(Refer Slide Time: 14:21)

$$det \quad \gamma: [a,b] \rightarrow C \quad be \ a \quad closed \quad curve$$

$$det \quad z_{0} \quad be \quad a \quad pt: \quad in \quad C \quad a+t$$

$$dist(\gamma, z_{0}) \rightarrow diam(\gamma).$$

$$dist(\gamma, z_{0}) := \quad ring \quad |\gamma(t) - z_{0}|$$

$$te(a,b)$$

$$diam(\gamma) := \quad sup \quad |\gamma(t) - \gamma(t')|.$$

$$t_{1}t'e[a,b]$$

Let $\gamma : [a, b] \longrightarrow \mathbb{C}$ be a closed curve and z_0 be a point in \mathbb{C} such that

 $dist(\gamma, z_0) > diam(\gamma),$

where dist $(\gamma, z_0) := \inf_{t \in [a,b]} |\gamma(t) - z_0|$ and diam $(\gamma) := \sup_{t,t' \in [a,b]} |\gamma(t) - \gamma(t')|$. Let us see what happens when we have such a scenario. Define γ_1 to a constant

Let us see what happens when we have such a scenario. Define γ_1 to a constant curve as $\gamma_1(t) = z = \gamma(a)$ for every $t \in [a, b]$. Then,

 $|\gamma(t) - \gamma_1(t)| < \operatorname{diam}(\gamma) < \operatorname{dist}(\gamma, z_0) \le |\gamma(t) - z_0|.$

Hence by Proposition 2, we have $W_{\gamma}(z_0) = W_{\gamma_1}(z_0)$. But since γ_1 is a constant curve, $W_{\gamma_1}(z_0) = 0 = W_{\gamma}(z_0)$. Geometrically it tells that, if z_0 is a point on the complex plane which is far away from the curve γ , then the curve does not wind around z_0 , as to be expected. PROPOSITION 3. Let $\gamma : [a, b] \longrightarrow \mathbb{C}$ be a closed curve and z_0 be a point not in γ . Then there exists r > 0 such that for $z \in D(z_0, r)$, $W_{\gamma}(z) = W_{\gamma}(z_0)$.

PROOF. Since $\gamma([a, b])$ is a closed subset of \mathbb{C} and $z_0 \notin \gamma([a, b])$, there exists r > 0 such that $D(z_0, r) \cap \gamma([a, b]) = \emptyset$. Let $h \in \mathbb{C}$ be such that |h| < r. Define $\gamma_h(t) = \gamma(t) - h$ for $t \in [a, b]$. Then,

$$\left|\gamma_{h}(t) - \gamma(t)\right| = |h| < r < \left|\gamma(t) - z_{0}\right|.$$

Hence

(1)
$$W_{\gamma_h}(z_0) = W_{\gamma}(z_0).$$

Now it is left as an exercise to the reader to verify the following equality,

$$W_{\gamma_h}(z_0) = \frac{1}{2\pi i} \int_{\gamma_h} \frac{dz}{z - z_0} = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - (z_0 + h)} = W_{\gamma}(z_0 + h).$$

(Refer Slide Time: 22:29)

$$\frac{1}{\sqrt{\gamma}} = \frac{1}{2\pi i} \int \frac{dz}{z-z_{o}} = \frac{1}{2\pi i} \int \frac{dz}{z-z_{o}} + \frac{1}{2\pi i} \int \frac{dz}{z-(z_{o}+h)}$$

$$\frac{1}{\sqrt{\gamma}} = \frac{1}{2\pi i} \int \frac{dz}{z-z_{o}} = \frac{1}{2\pi i} \int \frac{dz}{z-(z_{o}+h)}$$

$$\frac{1}{\sqrt{\gamma}} = \frac{1}{2\pi i} \int \frac{dz}{z-z_{o}} = \frac{1}{2\pi i} \int \frac{dz}{z-(z_{o}+h)}$$

From (1), for each *h* with |h| < r, we have

$$W_{\gamma}(z_0) = W_{\gamma}(z_0 + h).$$

Hence W_{γ} is constant on $D(z_0, r)$.

THEOREM 4. Let $\gamma : [a, b] \longrightarrow \mathbb{C}$ be a closed curve and z_0 be a point not in the image of γ . Then $W_{\gamma}(z_0)$ is an integer.

PROOF. Pick a partition $P : a = t_1 < t_2 < \cdots < t_n = b$ of [a, b] such that $\gamma \upharpoonright_{[t_j - t_{j+1}]}$ is homotopic with fixed end points to $\gamma_{z_j \to z_{j+1}}$ in $\mathbb{C} \setminus \{z_0\}$ where $z_j = \gamma(t_j)$. Then γ is homotopic to $\gamma_{z_1 \to z_2 \to \cdots \to z_n \to z_1}$ as closed curves. Since $W_{\gamma}(z_0) = W_{\gamma_{z_1 \to z_2} \to \cdots \to z_n \to z_1}(z_0)$, we may start with the assumption that γ is a closed polygonal path.

Let us now prove the result by induction. Let $z_1, ..., z_n$ be as above. Suppose $z_0 \in \gamma_{z_{n-1} \to z_1}$. Since $W_{\gamma}(z) = W_{\gamma}(z_0)$ for $z \in D(z_0, r)$, with r as described in Proposition 3, pick a point $z' \in D(z_0, r)$ and $z' \notin \gamma_{z_{n-1} \to z_1}$.

The induction is on the number of points $\{z_1, ..., z_n\}$. The case where n = 1 and n = 2 are trivial, since the polygonal path with one or two points does not form a closed curve. When n = 3, $\gamma = \gamma_{z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_1}$ will be a triangle, *T*. Let \hat{T} denote the convex hull of the triangle *T*. Then \hat{T} denote the interior of \hat{T} . If $z_0 \in \hat{T}$, then by Cauchy integral formula,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = 1$$

If $z_0 \in \mathbb{C} \setminus \hat{T}$, then γ is null-homotopic in $\mathbb{C} \setminus \{z_0\}$ and hence

$$\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0} = 0.$$

Hence $W_{\gamma}(z_0)$ is an integer.

Assume the result to be proved for up to n-1.

Let $\gamma = \gamma_{z_1 \rightarrow z_2 \rightarrow \dots \rightarrow z_n \rightarrow z_1}$. Now we have

$$\begin{split} W_{\gamma}(z') &= W_{\gamma_{z_1 \to z_2 \dots \to z_{n-1} \to z_1}}(z') + W_{\gamma_{z_1 \to z_{n-1} \to z_n \to z_1}}(z') \\ &= \frac{1}{2\pi i} \int_{\gamma_{z_1 \to z_2 \dots \to z_{n-1} \to z_1}} \frac{dz}{z - z'} + \frac{1}{2\pi i} \int_{\gamma_{z_1 \to z_{n-1} \to z_n \to z_1}} \frac{dz}{z - z'} \end{split}$$

Now by the induction hypothesis, first and second terms on the R.H.S are integers. Hence $W_{\gamma}(z')$ is an integer which implies $W_{\gamma}(z_0)$ is also an integer.

THEOREM 5 (**General Cauchy Integral Formula**). Let $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on open set Ω and $\gamma : [a, b] \longrightarrow \Omega$ be a closed curve which is null-homotopic. Then for $z_0 \notin \gamma([a, b])$, we have

$$f(z_0)W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)}.$$

PROOF. By factorization theorem for holomorphic functions,

$$f(z) - f(z_0) = (z - z_0)g(z)$$

and hence,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z) - f(z_0)}{(z - z_0)} = \frac{1}{2\pi i} \int_{\gamma} g(z).$$

Since γ is null homotopic on Ω , by Cauchy's theorem,

$$\frac{1}{2\pi i}\int_{\gamma}g(z)=0.$$

Therefore,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z_0)}{(z-z_0)} = f(z_0) W_{\gamma}(z_0).$$

-		_
г		-
L		_