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PROBLEM 1. Evaluate ∫
γ

ez −e−z

zn
d z

where n ∈N and γ(t ) = e i t , t ∈ [0,2π].

SOLUTION 1. Let f (z) = ez − e−z . Then f is an entire function. By higher order

Cauchy integral formula we have,

f n−1(0) = (n −1)!

2πi

∫
γ

f (z)

zn
d z.
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Hence,

∫
γ

ez −e−z

zn
d z = 2πi f n−1(0)

(n −1)!
.

Now it is an easy check to verify that,

f k (z) =

ez −e−z if k is even

ez +e−z if k is odd.

Therefore,

∫
γ

ez −e−z

zn
d z = 2πi f n−1(0)

(n −1)!

=


4πi

(n −1)!
if n is even

0 if n is odd.

PROBLEM 2. Evaluate

∫
γ

z2 +1

z(z2 +4)
d z

where γ(t ) = r e i t , t ∈ [0,2π], when 0 < r < 2 and r > 2.
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SOLUTION 2. We may spilt the integrand by using the partial fractions.

z2 +1

z(z2 +4)
= a

z
+ b

(z +2i )
+ c

z −2i
.

By our routine calculation, we will get the values of the coefficients a,b and c as,

a = 1

4
,b = c = 3

8
.

Now we have, ∫
γ

z2 +1

z(z2 +4)
d z = 1

4

∫
γ

d z

z
+ 3

8

∫
γ

d z

z +2i
+ 3

8

∫
γ

d z

z −2i
.

First we shall consider the case when 0 < r < 2 and we have γ(t ) = r e i t , t ∈ [0,2π].

We know that
1

z +2i
is holomorphic on C \ {−2i }. Also, γ is null-homotopic on C \

{−2i }. By Cauchy’s theorem, ∫
γ

d z

z +2i
= 0.
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Similarly, ∫
γ

d z

z −2i
= 0.

Hence, when 0 < r < 2, we have,∫
γ

z2 +1

z(z2 +4)
d z = 1

4

∫
γ

d z

z
= πi

2
.

Now, let us consider the case when r > 2.

(Refer Slide Time: 14:49)

Let ϵ > 0 be small enough such that D(2i ,ϵ) ⊆ D(0,r ) and let γ1(t ) = 2i + ϵe i t , t ∈
[0,2π]. Now γ is homotopic γ1 as closed curves by the straight line homotopy,

H(s, t ) = (1− s)γ(t )+ sγ1(t ), (s, t ) ∈ [0,1]× [0,2π].

Hence by Cauchy’s theorem, we have

1

2πi

∫
γ

d z

z −2i
= 1

2πi

∫
γ1

d z

z −2i
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and by the Cauchy integral formula,

3

8

∫
γ

d z

z −2i
= 3

8
·2πi · 1

2πi

∫
γ1

d z

z −2i
= 3πi

4
.

Similarly, we have
3

8

∫
γ

d z

z +2i
= 3πi

4

and
1

4

∫
γ

d z

z
= πi

2
.

Hence, ∫
γ

z2 +1

z(z2 +4)
d z = πi

2
+ 3πi

2
= 2πi .

PROBLEM 3. Let f be a bounded entire function and a,b ∈C be two distinct complex

numbers. Let R > max(|a|, |b|). Then evaluate,

IR =
∫
γ

f (z)

(z −a)(z −b)
d z

where γ(t ) = Re i t , t ∈ [0,2π]. Also evaluate lim
R→∞

IR .

SOLUTION 3.

IR =
∫
γ

f (z)

(z −a)(z −b)
d z

=
∫
γ

1

(a −b)

(
f (z)

(z −a)
− f (z)

(z −b)

)
d z

= 1

(a −b)

∫
γ

f (z)

z −a
d z − 1

(a −b)

∫
γ

f (z)

z −b
d z

= 2πi

(a −b)
f (a)− 2πi

(a −b)
f (b)

IR = 2πi

(
f (a)− f (b)

a −b

)
.

Notice that f is bounded, thus there exists an M > 0 such that | f (z)| < M for every z ∈C.

Since, |z −a| ≥ |z|− |a| ≥ R −|a| and |z −b| ≥ R −|b|,∣∣∣∣ f (z)

(z −a)(z −b)

∣∣∣∣≤ M

(R −|a|)(R −|b|)
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and hence

|IR | ≤ M

(R −|a|)(R −|b|)2πR.

Now,

lim
R→∞

|IR | ≤ lim
R→∞

M

(R −|a|)(R −|b|)2πR = 0.

Hence lim
R→∞

IR = 0 =⇒ 2πi

(
f (a)− f (b)

a −b

)
= 0 =⇒ f (a) = f (b), i.e., f is a constant.

(Refer Slide Time: 28:11)

PROBLEM 4. Let f be an entire function such that | f ′(z)| < | f (z)| for every z ∈C. Then

there exists a positive real number a such that

| f (z)| ≤ ae |z|.
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SOLUTION 4. Since 0 ≤ | f ′(z)| < | f (z)|, we have f is does not vanish on C. Hence
1

f
is

an entire function. Let g (z) = f ′(z)

f (z)
. Then g is holomorphic on C and also |g (z)| < 1 for

every z ∈C. By Liouville’s theorem, g ≡ c for some c ∈C, i.e., f ′(z) = c f (z).

We know that f is an entire function, hence there exists a power series expansion,

f (z) =
∞∑

n=0
an zn

in C. Also we know that,

f ′(z) =
∞∑

n=1
nan zn−1.

Since f ′(z) = c f (z), we have

∞∑
n=1

nan zn−1 =
∞∑

n=0
can zn .

Hence

ca0 = a1, ca1 = 2a2, . . . , cak = (k +1)!ak+1 =⇒ ak = ck a0

k !
.

Then we have,

f (z) =
∞∑

n=0

a0cn zn

n!
= a0

∞∑
n=0

(cz)n

n!
= a0 ·ecz .

PROBLEM 5. Suppose f is an entire function such that | f (z)| ≤ a + b|z|k for every

z ∈C, where a,b,k ∈N. Then f is a polynomial.

SOLUTION 5. Let z0 ∈C and γ : [0,2π] −→C be a curve given by γ(t ) = z0 +Re i t .

Now by the higher order Cauchy integral formula,

(1)
∣∣∣ f (k+1)(z0)

∣∣∣= ∣∣∣∣ (k +1)!

2πi

∫
γ

f (z)

(z − z0)k+2

∣∣∣∣ .

Since | f (z)| ≤ a +b|z|k , there must exists positive integers a′ and b′ such that | f (z)| ≤
a′+b′|z − z0|k for every z ∈C.
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Then in (1), we have∣∣∣∣ (k +1)!

2πi

∫
γ

f (z)

(z − z0)k+2

∣∣∣∣≤ (k +1)!

2π

(a′+b′Rk )

Rk+2
2πR

= (k +1)!

(
a′

Rk+1
+ b′

R

)
.

(Refer Slide Time: 37:35)

Hence, if R →∞, we have | f k+1(z0)| = 0 =⇒ f k+1(z) = 0 for every z ∈C. Thus f ℓ ≡ 0

for every ℓ≥ k +1. Then,

f (z) =
∞∑

n=0
an zn =

k∑
n=0

ak zk

which is a polynomial.

PROBLEM 6. Does there exists a holomorphic function on D, the unit disc, such that

f (zn) = 0 where {zn} is a countable set in D consisting of distinct points.
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SOLUTION 6. Consider zn = 1− 1

nπ
and the function defined by f (z) = sin

(
1

1− z

)
.

Then,

f (zn) = sin

(
1

1− (
1− 1

nπ

))= sin(nπ) = 0.


