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Principle of Analytic Continuation and Cauchy Estimates

We saw in the last lecture that holomorphic functions can be identified with complex

analytic functions. We will now look at one more corollary to the theorem, which states

that a holomorphic function can be written as a power series on sufficiently small disc

in the domain of definition, called the factor theorem for analytic functions.
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THEOREM 1 (Factor Theorem for Analytic Functions). Let Ω ⊆ C be an open set and

f :Ω−→C be a complex analytic function such that f (z0) = 0 at z0 ∈Ω. Then there exists

a unique complex analytic function g :Ω−→C such that f (z) = (z − z0)g (z).

1



2

PROOF. Since
1

z − z0
is holomorphic on Ω \ {z0} we have

f (z)

z − z0
, is holomorphic on

Ω\ {z0}.

By the hypothesis, f is complex analytic on D(z0,r ), where D(z0,r ) ⊆Ω, we have the

following power series expansion,

f (z) =
∞∑

n=1
an(z − z0)n .

For z ∈ D(z0,r ), define

g (z) :=
∞∑

n=0
an+1(z − z0)n .

It is left as an exercise to the reader to verify that g converges in D(z0,r ).

On D(z0,r ), we have

(z − z0)g (z) = (z − z0)

( ∞∑
n=0

an+1(z − z0)n
)
=

∞∑
n=1

an(z − z0)n = f (z).
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Hence on D(z0,r ), f (z) = (z − z0)g (z). Then, on D(z0,r ) \ {z0}, g (z) coincides with
f (z)

z − z0
.

Since
f (z)

z − z0
is complex analytic on Ω \ {z0}, g is complex analytic at every point in

Ω\ {z0}. Also g has a power series expansion around z0 by the definition.

Uniqueness of the function g follows from the continuity of
∞∑

n=0
an+1(z − z0)n at z0.

□

Let us prove one more consequence. This consequence is classically called as the

principle of analytic continuation.

THEOREM 2 (Principle of Analytic Continuation). Let Ω ⊆ C be an open connected

subset and f , g : Ω −→ C be complex analytic on Ω. Suppose f and g agree on a non-

empty open subset ofΩ. Then f ≡ g onΩ.

PROOF. Let us define a subset E ofΩ to be

E := {
z ∈Ω : f n(z) = g n(z) ∀n ∈N}

.

Since f and g agrees on an open set, E is non-empty. If we manage to prove that E is

both open and closed, then by the connectedness ofΩ implies that E =Ω.

We shall prove first that E is closed. For n ∈N, let En = {z ∈Ω : f n(z) = g n(z)}. Since

both f n and g n are continuous, En is closed for each n ∈N. Further E = ⋂
n∈N

En , which is

closed.

Next we shall prove that E is open. Let z0 ∈ E . Then f n(z0) = g n(z0) ∀n ∈N. Hence

f and g have the same power series expansion in D(z0,r ), where D(z0,r ) ⊆Ω. Then for

w ∈ D(z0,r ), we have f n(w) = g n(w) ∀n ∈N. Hence D(z0,r ) ⊆ E .

Hence E is both open and closed. □

We can prove that the zero sets of a non-trivial holomorphic function will always be

isolated. In some sense, we are proving a stronger version of what we have just proved. If

two functions defined on a connected open set agree on a subset that has a limit point,
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we will be able to show that those two functions are identical in the domain of definition.

This is stronger than the principle of analytic continuation in the sense that here we are

not demanding that these two functions should agree on an open set for being identical

but a condition weaker than that. This theorem is also sometimes called the identity

theorem.

(Refer Slide Time: 17:41)

THEOREM 3 (Identity Theorem). Let Ω ⊆ C be an open connected set and f :Ω −→ C

be a holomorphic function which is not identically zero and such that f (z0) = 0. Then

there exists ϵ> 0 such that f (z) ̸= 0 on D(z0,ϵ) \ {z0}.

PROOF. If f n(z0) = 0 for every n ∈ N, then f ≡ 0 on Ω by Theorem 2. Since by the

hypothesis f ̸≡ 0, ∃m ∈ N such that f m(z0) ̸= 0. Let n0 be the smallest positive integer

such that f n0 (z0) ̸= 0.
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By the choice of n0, we have f k (z0) = 0 for every k < n0. Applying Theorem 1 itera-

tively, we have

f (z) = (z − z0)n0 g (z).

If g (z0) = 0, then f n0 (z0) = 0 which is a contradiction. Hence g (z0) ̸= 0. By the continuity

of g , there exists a ϵ > 0 such that g (z) ̸= 0 for every z ∈ D(z0,ϵ). Also (z − z0) does not

vanish on D(z0,r )\{z0}. Hence f (z) = (z−z0)n0 g (z) does not vanish on D(z0,r )\{z0}. □

EXAMPLE 4. Consider f (z) = sin2(z)+cos2(z). We know that sin2(x)+cos2(x) = 1 for

every x ∈R. Since R× {0} is a closed subset of C, by Theorem 3, we have f (z) ≡ 1. That is

sin2(z)+cos2(z) = 1 on C.

THEOREM 5 (Higher Order Cauchy Integral Formula). Let f : Ω −→ C be complex

analytic on an open set Ω ⊆ C an z0 ∈ Ω with D(z0,r ) ⊆ Ω. Let γ be a closed curve in

Ω \ {z0} homotopic as closed curves to a reparametrization of γ1 where γ1(t ) = z0 + r e i t ,

t ∈ [0,2π]. Then for each n ∈N

f n(z0) = n!

2πi

∫
γ

f (z)

(z − z0)n+1
d z = n!

2πi

∫
γ1

f (z)

(z − z0)n+1
d z.

PROOF. Since f is complex analytic at z0 and the coefficients an in the power series

expansion of f is given by,

an = 1

2πi

∫
γ1

f (z)

(z − z0)n+1
d z.
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We know that an = f n(z0)

n!
. Hence,

f n(z0) = n!

2πi

∫
γ

f (z)

(z − z0)n+1
d z.

□

And as a consequence, we directly have the Cauchy estimates using the higher order

Cauchy integral formula. By this we will be able to place bounds on the derivatives of f

inΩ.

COROLLARY 6 (Cauchy Estimates). Let Ω ⊆ C be an open subset and f : Ω −→ C be

a holomorphic function. Suppose z0 ∈ Ω be such that D(z0,r ) ⊆ Ω for some r > 0. Let

γ(t ) = z0 + r e i t for t ∈ [0,2π]. Suppose | f (z)| ≤ M for every z ∈ γ([0,2π]). Then for every

n ∈N,

f n(z0) ≤ M
n!

r n
.
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PROOF. By Theorem 5, ∣∣ f n(z0)
∣∣= ∣∣∣∣ n!

2πi

∫
γ

f (z)

(z − z0)n+1
d z

∣∣∣∣
≤ n!

2π

(
M

r n+1

)
2πr = M

n!

r n
.

□


