Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture No - 26

Principle of Analytic Continuation and Cauchy Estimates

We saw in the last lecture that holomorphic functions can be identified with complex
analytic functions. We will now look at one more corollary to the theorem, which states
that a holomorphic function can be written as a power series on sufficiently small disc
in the domain of definition, called the factor theorem for analytic functions.
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THEOREM 1 (Factor Theorem for Analytic Functions). Let Q < C be an open set and
f:Q — C be a complex analytic function such that f(z9) = 0 at zg € Q. Then there exists

a unique complex analytic function g : QO — C such that f(z) = (z — z9) g(2).
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L <



, is holomorphic on

PROOE Since
Q\ {Z()}.

By the hypothesis, f is complex analytic on D(zy, r), where D(zy, r) < 2, we have the

is holomorphic on Q\ {zp} we have G
Z— 20 Z— 20

following power series expansion,
o0
f@) =) an(z—2)".
n=1

For z € D(zy, 1), define

g(2):=) apn(z—20)".

n=0

It is left as an exercise to the reader to verify that g converges in D(z, ).

On D(zy, r), we have
(z—20)g(2) = (z— 20) (Z an+1(z—zO)”) =) an(z—2z0)" = f(2).
n=0 n=1

(Refer Slide Time: 07:59)

3 e uw')()le/)t rma%%'c PAY 2y Pﬁ- SRS PAR F N
e ?;/;,ag & Comglen Ma&dkc. 9 hoo o

pewth A owel yx}mvwim Wownd 2o ba dlﬂ—\.mhr\n

nep

| .

umquw ’ballm le metg % 3’ G (3°2))  al 2

L <



3

Hence on D(zy, 1), f(2) = (z— 29)g(z). Then, on D(zy, ) \ {20}, g(2) coincides with
f(2

z—2zy

f(z)
Z— 20
Q\ {zp}. Also g has a power series expansion around z, by the definition.

Since

is complex analytic on Q\ {zp}, g is complex analytic at every point in

oo
Uniqueness of the function g follows from the continuity of Y a,+1(z— zp)" at zo.

n=0
0]

Let us prove one more consequence. This consequence is classically called as the

principle of analytic continuation.

THEOREM 2 (Principle of Analytic Continuation). Let Q) < C be an open connected
subset and f,g : Q — C be complex analytic on Q. Suppose f and g agree on a non-

empty open subset of Q). Then f = g on Q.

PROOEF. Let us define a subset E of Q to be
E:={zeQ:f"(2)=g"(2) VneN}.

Since f and g agrees on an open set, E is non-empty. If we manage to prove that E is
both open and closed, then by the connectedness of Q2 implies that E = Q).

We shall prove first that E is closed. For n €N, let E, = {z € Q: f"(z) = g"(2)}. Since
both f" and g”" are continuous, Ej, is closed for each n € N. Further E = (1 E,, which is
closed. e

Next we shall prove that E is open. Let zy € E. Then f"(zy) = g"(z9) V¥ neN. Hence
f and g have the same power series expansion in D(z, r), where D(zy,7) € Q. Then for

w € D(zy,1), we have f"(w) = g"(w) VneN.Hence D(z,1) <E.

Hence E is both open and closed. U

We can prove that the zero sets of a non-trivial holomorphic function will always be
isolated. In some sense, we are proving a stronger version of what we have just proved. If

two functions defined on a connected open set agree on a subset that has a limit point,



4

we will be able to show that those two functions are identical in the domain of definition.
This is stronger than the principle of analytic continuation in the sense that here we are
not demanding that these two functions should agree on an open set for being identical
but a condition weaker than that. This theorem is also sometimes called the identity
theorem.
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THEOREM 3 (Identity Theorem). Let Q2 < C be an open connected set and f : O — C
be a holomorphic function which is not identically zero and such that f(z9) = 0. Then

there exists € > 0 such that f(z) # 0 on D(zg,€) \ {zo}.

PROOE If f"(zp) = 0 for every n € N, then f = 0 on Q by Theorem 2. Since by the
hypothesis f # 0, 3m € N such that f(zy) # 0. Let ng be the smallest positive integer
such that " (zg) # 0.
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By the choice of ng, we have f¥(zy) = 0 for every k < ny. Applying Theorem 1 itera-

tively, we have

f(2) = (z—2zp)"g(2).

If g(zp) =0, then f"(zy) = 0 which is a contradiction. Hence g(zy) # 0. By the continuity
of g, there exists a € > 0 such that g(z) # 0 for every z € D(zy,€). Also (z— zp) does not

vanish on D(zy, r) \{zp}. Hence f(z) = (z—zp)" g(z) does not vanish on D(zy, r)\{zo}. [

EXAMPLE 4. Consider f(z) = sin?(z) + cos?(z). We know that sin?(x) + cos?(x) = 1 for
every x € R. Since R x {0} is a closed subset of C, by Theorem 3, we have f(z) = 1. That is

sin?(z) + cos?(z) =1 on C.

THEOREM 5 (Higher Order Cauchy Integral Formula). Let f : Q — C be complex
analytic on an open set Q < C an zp € Q with D(zyg,r) < Q. Lety be a closed curve in
Q\ {z9} homotopic as closed curves to a reparametrization of y, where y,(t) = zo + re',

t€[0,2m]. Then foreach n e N

| |
prag=fi [ SO g O

y (2—2z0)"1 7 2mi )y, (z—z)E T

PROOE. Since f is complex analytic at zy and the coefficients a, in the power series

expansion of f is given by,

1 f(2)

s 2miJy, (- z)"t T

an
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n
z
We know that a,, = ) (' 0) . Hence,
n!

n! f(2)

. z.
27i Jy (z— zp)**+!

f(z0) =

O

And as a consequence, we directly have the Cauchy estimates using the higher order

Cauchy integral formula. By this we will be able to place bounds on the derivatives of f

in Q.

COROLLARY 6 (Cauchy Estimates). Let Q < C be an open subset and f : O — C be

a holomorphic function. Suppose zy € Q be such that D(zy,r) < Q for some r > 0. Let

y(t) = zo + ré'’ for t € [0,2n]. Suppose |f(z)| < M for every z € y([0,2n]). Then for every

nenN,

) = M2
o) = M-

L3 <



PROOE. By Theorem 5,

| f"(z0)| =

n!

27

f(2) '
/}: (z— Zo)n+1 dz

M) n!



