Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture No - 23

Cauchy’s Theorem

In the last lecture as a corollary to Goursat theorem, we proved that if Q is a convex
domain and if y is a closed polygonal path in Q, then for any holomorphic function f
on Q, fy f(z2)dz = 0. By using a complex analog of the second fundamental theorem of
calculus, which was proved in the last week, we can immediately conclude a version of
Cauchy’s theorem in the case of convex domains. This is sometimes also called the local
version of the Cauchy’s theorem.
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THEOREM 1 (Cauchy’s Theorem for Convex Domains).
Let Q < C be a convex open set and f : O — C be holomorphic on Q. Then f has an

anti-derivative in Q and if vy is closed rectifiable curve in (), then

ff(z)dz =0.
Y
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PROOE. By Cauchy’s theorem of polygonal paths, we have f f(z)dz = 0forany closed
(o}
polygonal path o in Q. Then by the second fundamental theorem of calculus, we have

an explicit anti-derivative F of f on QQ which was given by

F(zy) :ff(Z)dz
Y

where v is the straight line from z, to z; for zg € Q fixed.

By the first fundamental theorem of calculus,

ff(z)dz: 0
Y

for every rectifiable curve y in Q since f has an anti-derivative. U

THEOREM 2 (Cauchy’s Theorem).
Let Q < C be open and f : Q — C be holomorphic on Q. Letyy: [a,b] — Q and y; :
[c,d] — Q be rectifiable curves on Q) from zy to zy and such that y( is homotopic with
fixed end-points to a reparametrization of y,, then
f(@dz=| f(2)dz.
Yo 7

PROOE. Since the integral is invariant under reparametrization, we may assume that
Y1 is defined on [a, b].

Let H:[0,1] x [a, b] —  be a homotopy with fixed end-points from y, to y;. Since
[0,1] x [a, b] is compact, we have H([0,1] x [a, b]) is compact in Q.

Let % = {Uy,Us,,...,Uy,} be open subsets of O such that ﬁj c Q and H([0,1] x
[a,b]) c LnJ Uj. Let r be the Lebesgue number corresponding to % . Then for any (s, t) €
10,11 x [a, bl, D(H(s, 0,1) €.

Since [0, 1] x [a, b] is compact, H is uniformly continuous on [0, 1] x [a, b] and hence

36 > 0 such that
-
|H(s,t) - H(s', )| < 1 whenever |s—s'| <d and |t —t'| < 6.
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Let P :0 =359 < s <:- <5, =1 be a partition of [0,1] such that |P;| < § and let
Py:a=1ty<t <-- <ty = bbeapartition of [a, b] such that |P,| <§.
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Let Ci,j denote the polygonal path Y H(si,t))—H(si,tj1)—H(si-1,tj-1)—H(si1,)) = H(s;, 1)+ By

our choice of §, we can ensure that diam(C; ;) < r. Hence C; j < D(H(s;, £}),1).
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By Cauchy’s theorem for polygonal paths on convex open sets, we have

f(2)dz=0.
Cij

Now it is left as an exercise to the reader to verify that

Z i f(z)dz:fcf(z)dz

i=1j=1JCi;j
where C:=YHq,1,,)—HA,ty_))—— H(, tg)— H(O0,1)—-—H(©,,,)- 1hen C is a reparametrization

of (—o1) + 02, where

g1 = YH(Lto)—'-"—'H(Ltm)

02 =Y H(0,t0)—+—H(0,Lp)-

Then
ff(z)dz=f f(z)dz:f f(z)dz—f f2)dz.
C (—0'1)+0'2 [op) o1
Since
f fl2)dz=0 Vi,j,
Ci,j
we have

ff(z)dz:O = f(z)dz:f f(z)dz.
C o5

o1
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Notice that y( r[tjrtjﬂ] ([zj,tj+1]) < D(H(0, t;), r) by our choice of partition. Similarly,
Y H©,)—H©,1;,1) ([0,1]) € D(H(0, 1), 1).

By Cauchy’s theorem on convex sets,

f}”oht

jrlj+1

f2)dz = f fladz.
] YH@©,r;)—H(© tiv1

g2

f(z)dz:f f(@)dz
YH(©,t9)—-—H(0,tm)

m-1
= Zf f(2)dz
Jj=0 YYHO.1))—=HO,tj,1)
m-—1
= Zf f(z)dz
7=0 YY0l1zj,1141)

f f(2)dz
Yol1o,61++Y (1, tm)

:f f(2)dz.
Yo

Similarly we can establish that

ff(z)dz:f f(2)d=z.
o1 71

Hence we can conclude that
f f@)dz= f f(z)dz.
Yo Y1
O

DEFINITION 1 (Simply Connected Domains). An open set {2 < C is said to be simply

connected if every closed curve y at zj € Q is null homotopic to the constant curve at z;.

Now we can state a special case of Cauchy’s theorem for simply connected domains.
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THEOREM 3. Let Q < C be simply connected and f : Q — C be holomorphic on Q,

then
ff(z)dz =0
Y

for every closed rectifiable curvey in .

Proof of the theorem is immediate from the Cauchy’s theorem and the definition of

simply connected domain.



