Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 23 Cauchy's Theorem

In the last lecture as a corollary to Goursat theorem, we proved that if Ω is a convex domain and if γ is a closed polygonal path in Ω , then for any holomorphic function f on Ω , $\int_{\gamma} f(z) dz = 0$. By using a complex analog of the second fundamental theorem of calculus, which was proved in the last week, we can immediately conclude a version of Cauchy's theorem in the case of convex domains. This is sometimes also called the local version of the Cauchy's theorem.

(Refer Slide Time: 00:51)

THEOREM 1 (Cauchy's Theorem for Convex Domains).

Let $\Omega \subseteq \mathbb{C}$ be a convex open set and $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω . Then f has an anti-derivative in Ω and if γ is closed rectifiable curve in Ω , then

$$\int_{\gamma} f(z) dz = 0$$

PROOF. By Cauchy's theorem of polygonal paths, we have $\int_{\sigma} f(z) dz = 0$ for any closed polygonal path σ in Ω . Then by the second fundamental theorem of calculus, we have an explicit anti-derivative *F* of *f* on Ω which was given by

$$F(z_1) = \int_{\gamma} f(z) dz$$

where γ is the straight line from z_0 to z_1 for $z_0 \in \Omega$ fixed.

By the first fundamental theorem of calculus,

$$\int_{\gamma} f(z) dz = 0$$

for every rectifiable curve γ in Ω since *f* has an anti-derivative.

THEOREM 2 (Cauchy's Theorem).

Let $\Omega \subseteq \mathbb{C}$ be open and $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω . Let $\gamma_0 : [a, b] \longrightarrow \Omega$ and $\gamma_1 : [c, d] \longrightarrow \Omega$ be rectifiable curves on Ω from z_0 to z_1 and such that γ_0 is homotopic with fixed end-points to a reparametrization of γ_1 , then

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

PROOF. Since the integral is invariant under reparametrization, we may assume that γ_1 is defined on [a, b].

Let $H : [0,1] \times [a,b] \longrightarrow \Omega$ be a homotopy with fixed end-points from γ_0 to γ_1 . Since $[0,1] \times [a,b]$ is compact, we have $H([0,1] \times [a,b])$ is compact in Ω .

Let $\mathscr{U} = \{U_1, U_2, ..., U_n\}$ be open subsets of Ω such that $\overline{U}_j \subseteq \Omega$ and $H([0,1] \times [a,b]) \subset \bigcup_{j=1}^n U_j$. Let *r* be the Lebesgue number corresponding to \mathscr{U} . Then for any $(s,t) \in [0,1] \times [a,b]$, $D(H(s,t),r) \subseteq \Omega$.

Since $[0,1] \times [a,b]$ is compact, *H* is uniformly continuous on $[0,1] \times [a,b]$ and hence $\exists \delta > 0$ such that

$$|H(s,t) - H(s',t')| < \frac{r}{4}$$
 whenever $|s-s'| < \delta$ and $|t-t'| < \delta$.

(Refer Slide Time: 17:03)

Let $P_1 : 0 = s_0 < s_1 < \cdots < s_n = 1$ be a partition of [0, 1] such that $|P_1| < \delta$ and let $P_2 : a = t_0 < t_1 < \cdots < t_m = b$ be a partition of [a, b] such that $|P_2| < \delta$.

(Refer Slide Time: 20:19)

Let $C_{i,j}$ denote the polygonal path $\gamma_{H(s_i,t_j) \to H(s_i,t_{j-1}) \to H(s_{i-1},t_{j-1}) \to H(s_{i-1},t_j) \to H(s_i,t_j)}$. By our choice of δ , we can ensure that diam $(C_{i,j}) < r$. Hence $C_{i,j} \subset D(H(s_i,t_j),r)$.

By Cauchy's theorem for polygonal paths on convex open sets, we have

$$\int_{C_{i,j}} f(z) dz = 0.$$

Now it is left as an exercise to the reader to verify that

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \int_{C_{i,j}} f(z) dz = \int_{C} f(z) dz$$

where $C := \gamma_{H(1,t_m) \to H(1,t_{m-1}) \to \dots \to H(1,t_0) \to H(0,t_1) \to \dots \to H(0,t_m)}$. Then *C* is a reparametrization of $(-\sigma_1) + \sigma_2$, where

$$\sigma_1 := \gamma_{H(1,t_0) \to \dots \to H(1,t_m)}$$
$$\sigma_2 := \gamma_{H(0,t_0) \to \dots \to H(0,t_m)}.$$

Then

$$\int_C f(z)dz = \int_{(-\sigma_1)+\sigma_2} f(z)dz = \int_{\sigma_2} f(z)dz - \int_{\sigma_1} f(z)dz$$

Since

$$\int_{C_{i,j}} f(z) dz = 0 \qquad \forall \ i, j,$$

we have

$$\int_C f(z)dz = 0 \implies \int_{\sigma_1} f(z)dz = \int_{\sigma_2} f(z)dz.$$

(Refer Slide Time: 30:06)

Notice that $\gamma_0 \upharpoonright_{[t_j, t_{j+1}]} ([t_j, t_{j+1}]) \subseteq D(H(0, t_j), r)$ by our choice of partition. Similarly, $\gamma_{H(0, t_j) \to H(0, t_{j+1})}([0, 1]) \subseteq D(H(0, t_j), r).$

By Cauchy's theorem on convex sets,

$$\int_{\gamma_0 \upharpoonright [t_j, t_{j+1}]} f(z) dz = \int_{\gamma_{H(0, t_j) \to H(0, t_{j+1})}} f(z) dz.$$

$$\int_{\sigma_2} f(z) dz = \int_{\gamma_{H(0,t_0)} \to \dots \to H(0,t_m)} f(z) dz$$

= $\sum_{j=0}^{m-1} \int_{\gamma_{H(0,t_j)} \to H(0,t_{j+1})} f(z) dz$
= $\sum_{j=0}^{m-1} \int_{\gamma_0 \upharpoonright [t_j, t_{j+1}]} f(z) dz$
= $\int_{\gamma_0 \upharpoonright [0,t_1] + \dots + \gamma [t_{m-1}, t_m]} f(z) dz$
= $\int_{\gamma_0} f(z) dz$.

Similarly we can establish that

$$\int_{\sigma_1} f(z) dz = \int_{\gamma_1} f(z) dz.$$

Hence we can conclude that

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

DEFINITION 1 (Simply Connected Domains). An open set $\Omega \subseteq \mathbb{C}$ is said to be simply connected if every closed curve γ at $z_0 \in \Omega$ is null homotopic to the constant curve at z_0 .

Now we can state a special case of Cauchy's theorem for simply connected domains. (Refer Slide Time: 38:39)

THEOREM 3. Let $\Omega \subseteq \mathbb{C}$ be simply connected and $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω , then

$$\int_{\gamma} f(z) dz = 0$$

for every closed rectifiable curve γ in Ω .

Proof of the theorem is immediate from the Cauchy's theorem and the definition of simply connected domain.