Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture No - 22

Cauchy-Goursat Theorem

In the last lecture we laid the topological framework to state Cauchy’s theorem.
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Cauchy’s Theorem

Let Q) < C be open and f : Q2 — C be holomorphic on Q).

(i) Ifyo:la,bl — Qandy; : [c,d] — Q are rectifiable curves from z to zy and suppose

Yo is homotopic to a reparametrization of y1, then

ff(z)dzzf f(z)dz.
Yo Y1

(ii) Ifyo : [a,b] — Q and v, : [c,d] — Q are closed rectifiable curves such that vy is

homotopic as closed curves to a reparametrization of y,, then

f(eydz=| f(z)dz.
Yo Y1

1



Cauchy’s theorem is a very powerful tool in the sense that it can be used to com-
pute the integral of f over any rectifiable curve by shifting the curve via homotopy to a
contour over which the integral can be computed easily.

We will now state variant of the Cauchy’s theorem. It essentially says the same.

Cauchy’s Theorem-II

Let Q) < C be open and f : Q — C is holomorphic on Q. Suppose vy : [a,b] — Q isa

rectifiable curve which is null-homotopic. Then

f f(z)dz=0.
Yo

Let us compare the two variance of Cauchy’s theorem.

Cauchy’s theorem = Cauchy’s theorem-II is immediate, because in the part (ii) of
Cauchy’s theorem, if we take y; to be a constant curve, then the hypothesis of Cauchy’s
theorem-1II is satisfied. Conclusion follows from the fact that | f(z)dz =0, where vy, is
a constant curve. "

Proving the other implication is non-trivial. We may put that as a proposition.
PROPOSITION 1. Cauchy’s theorem-1I = Cauchy’s theorem.

PROOF. Here we will prove part (i) of Cauchy’s theorem and leave part (ii) as an exer-
cise to the reader.
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Letyo:[a, bl — Q,y1 : [a, b] — Q such that y( ~ y; with fixed end points.
Yo+ (=y1) ~y1+ (—=y1) with fixed end points
~v, with fixed end points

where v; : [a, b] — Q is such that y» (1) = 29 = yo(a).

By Cauchy’s theorem-II, we have

f f(2)dz=0 < fr)dz= f(z)dz.
Yo+(—=v1) Yo 71

O

1 .
EXAMPLE 2. Let f:C\ {0} — C given by f(z) = —. Consider y(t) = ¢'!, t € [0,27].
z
Then

ff(z)dz =2mi.
Y

THEOREM 3 (Goursat’s Theorem).
Let Q< C, f:Q— C be holomorphic and zi,z»,z3 € Q such that the convex hull of

z1,22,23 is containedin Q. Then

f f(2)dz=0.
Yz1—2—23—21
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PROOF. Letus denote the curve y; —z,—z;—z by To.
Suppose

=€

f(2)dz
To

for some € > 0. Let z12 be the midpoint of the straight line joining z; and z,. Similarly
223, 231 be the midpoints of straight-line joining z, and z3, and z3 and z; respectively.

Then

)

‘f f(2)dz ff(z)dz+f f(z)dz+f f(z)dz+f f(2)dz
To T Y2 Y3 Y4

where,

Y1=Yz—zi—z1—z00 Y2 = Yao—zos—z12—220 V3 = Yzz— 231 —223— 23 and Y4 =Y z12—203—231— 212"

Thus,

€< f f(@)dz| < f2)dz|+ f(@)dz|+ f(2)dz|+ f(2)dz|.
Ty T Y2 Y3 Y4
Hence at least one of y1,Y2,y3 and y4, which shall be denoted as T, must satisfy
€
(2)dz| = -.
IRCE

T
Note that |T;| = |2—0|.



Let T; denote the convex hull of T; and let diam(7;) = sup {Iz -—w|:z,we Ti}.
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Now, diam(77) = %. By repeating the process above, we get Ty, T1, T2, -+ such

that

>€

U f(2)dz
T

Also observe that Tp> Ty 2 -+ .

T, . diam(T
7ol giam(i,) = 32mT0)

on on

|Tn|:

Then |T;,| — 0 and diam(7},) — 0 as n — co.
Pick z, € T, and then {z,} ,en is a Cauchy sequence by our choice of T;. By com-
.
pleteness, z,, — zo where zyp € () T;.

i=0
Since f is complex differentiable at z,, given ¢’ > 0, 3§ > 0 such that

|(f(2) = f(20)) — ' (20) (2 — 20)| < €|z — 20

whenever |z — zg| < 9.



For large n, T, = D(z,8). Hence |z — zy| < diam(T}) = W'
That is,
diam (7
|(f(2) = f(z0)) = ' (20) (z - z0)| <€,_1ar;( 0)'
Hence
diam (7 diam (7
UT (F(@ = (F(zo) + f(20) (2 — 20))) dz| < €’|Tn|—lar;( 2 =eim laj;( 2
That is,
T f(z)dz‘f (f(20) + f'(z0)(z— 20)) dz| < €'| Ty |dlam(T0)
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Now it is left to reader to verify by using first fundamental theorem of calculus that,

f (f(z0) + f'(20) (z = 20)) d z = 0.

n

U f(2)dz

Hence

diam(T
< |7, 23 0) ( 0)




diam (T
Then for ¢’ small enough such that €'| Tp| %6,

f(2)dz

Ty

€
< —_—
41’1
which is a contradiction to ().
Thus,

<e Ve>0

f(2)dz

To

= | f(2)dz=0.
To

THEOREM 4 (Cauchy’s Theorem of Polygonal Paths).
Let Q < C be a convex and Yz .z —...—.z,—z be a closed polygonal path and suppose

f :Q — C be holomorphic. Then
f f(2)dz=0.
Yz1—zp——zn—2z1

(Refer Slide Time: 40:22)
ull %.'_?Jd% =

1

R R L ey

Padls Prefy o by dndachen.
o n=, (e waat's  Ham
felly  ana Hak ng{-r)d'r‘.- =




PROOE. Proof is by using induction. For the base case, we take n = 3 because for

n = 1,2 we have nothing to prove. For n = 3 Goursat’s theorem tells us that

ff(z)dz: 0
Y

where v is a closed polygonal path with 3 vertices.

Assume the result is proved for up to n — 1. Then,

f f(2)dz :f f(z)dz+f f(2)dz
Yz1—zp—+—2n—21 Yz —zp——zp-1—21 Yzp-1—2n—21—2p-1
=0+0=0



