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Cauchy-Goursat Theorem

In the last lecture we laid the topological framework to state Cauchy’s theorem.
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Cauchy’s Theorem

LetΩ⊆C be open and f :Ω−→C be holomorphic onΩ.

(i) If γ0 : [a,b] −→Ω and γ1 : [c,d ] −→Ω are rectifiable curves from z0 to z1 and suppose

γ0 is homotopic to a reparametrization of γ1, then

∫
γ0

f (z)d z =
∫
γ1

f (z)d z.

(ii) If γ0 : [a,b] −→ Ω and γ1 : [c,d ] −→ Ω are closed rectifiable curves such that γ0 is

homotopic as closed curves to a reparametrization of γ1, then

∫
γ0

f (z)d z =
∫
γ1

f (z)d z.

1



2

Cauchy’s theorem is a very powerful tool in the sense that it can be used to com-

pute the integral of f over any rectifiable curve by shifting the curve via homotopy to a

contour over which the integral can be computed easily.

We will now state variant of the Cauchy’s theorem. It essentially says the same.

Cauchy’s Theorem-II

Let Ω ⊆ C be open and f : Ω −→ C is holomorphic on Ω. Suppose γ0 : [a,b] −→ Ω is a

rectifiable curve which is null-homotopic. Then

∫
γ0

f (z)d z = 0.

Let us compare the two variance of Cauchy’s theorem.

Cauchy’s theorem =⇒ Cauchy’s theorem-II is immediate, because in the part (ii) of

Cauchy’s theorem, if we take γ1 to be a constant curve, then the hypothesis of Cauchy’s

theorem-II is satisfied. Conclusion follows from the fact that
∫
γ1

f (z)d z = 0, where γ1 is

a constant curve.

Proving the other implication is non-trivial. We may put that as a proposition.

PROPOSITION 1. Cauchy’s theorem-II =⇒ Cauchy’s theorem.

PROOF. Here we will prove part (i) of Cauchy’s theorem and leave part (ii) as an exer-

cise to the reader.
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Let γ0 : [a,b] −→Ω,γ1 : [a,b] −→Ω such that γ0 ∼ γ1 with fixed end points.

γ0 + (−γ1) ∼ γ1 + (−γ1) with fixed end points

∼ γ2 with fixed end points

where γ2 : [a,b] −→Ω is such that γ2(t ) = z0 = γ0(a).

By Cauchy’s theorem-II, we have∫
γ0+(−γ1)

f (z)d z = 0 ⇐⇒
∫
γ0

f (z)d z =
∫
γ1

f (z)d z.

□

EXAMPLE 2. Let f : C \ {0} −→ C given by f (z) = 1

z
. Consider γ(t ) = e i t , t ∈ [0,2π].

Then ∫
γ

f (z)d z = 2πi .

THEOREM 3 (Goursat’s Theorem).

Let Ω ⊆ C, f : Ω −→ C be holomorphic and z1, z2, z3 ∈ Ω such that the convex hull of

z1, z2, z3 is contained in Ω. Then∫
γz1→z2→z3→z1

f (z)d z = 0.
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PROOF. Let us denote the curve γz1→z2→z3→z1 by T0.

Suppose ∣∣∣∣∫
T0

f (z)d z

∣∣∣∣≥ ϵ

for some ϵ > 0. Let z12 be the midpoint of the straight line joining z1 and z2. Similarly

z23, z31 be the midpoints of straight-line joining z2 and z3, and z3 and z1 respectively.

Then ∣∣∣∣∫
T0

f (z)d z

∣∣∣∣= ∣∣∣∣∫
γ1

f (z)d z +
∫
γ2

f (z)d z +
∫
γ3

f (z)d z +
∫
γ4

f (z)d z

∣∣∣∣ ,

where,

γ1 = γz1→z12→z31→z1 , γ2 = γz2→z23→z12→z2 , γ3 = γz3→z31→z23→z3 andγ4 = γz12→z23→z31→z12 .

Thus,

ϵ≤
∣∣∣∣∫

T0

f (z)d z

∣∣∣∣≤ ∣∣∣∣∫
γ1

f (z)d z

∣∣∣∣+ ∣∣∣∣∫
γ2

f (z)d z

∣∣∣∣+ ∣∣∣∣∫
γ3

f (z)d z

∣∣∣∣+ ∣∣∣∣∫
γ4

f (z)d z

∣∣∣∣ .

Hence at least one of γ1,γ2,γ3 and γ4, which shall be denoted as T1, must satisfy∣∣∣∣∫
T1

f (z)d z

∣∣∣∣≥ ϵ

4
.

Note that |T1| = |T0|
2

.
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Let T̂i denote the convex hull of Ti and let diam(T̂i ) = sup
{|z −w | : z, w ∈ T̂i

}
.
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Now, diam(T̂1) = diam(T̂0)

2
. By repeating the process above, we get T0,T1,T2, · · · such

that ∣∣∣∣∫
Tn

f (z)d z

∣∣∣∣≥ ϵ

4n
−→ (∗).

Also observe that T̂0 ⊃ T̂1 ⊃ ·· · .

|Tn | = |T0|
2n

, diam(T̂n) = diam(T̂0)

2n
.

Then |Tn |→ 0 and diam(T̂n) → 0 as n →∞.

Pick zn ∈ T̂n and then {zn}n∈N is a Cauchy sequence by our choice of T̂i . By com-

pleteness, zn → z0 where z0 ∈
∞⋂

i=0
T̂i .

Since f is complex differentiable at z0, given ϵ′ > 0, ∃δ> 0 such that

∣∣( f (z)− f (z0)
)− f ′(z0)(z − z0)

∣∣< ϵ′|z − z0|

whenever |z − z0| < δ.
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For large n, T̂n ⊂ D(z0,δ). Hence |z − z0| < diam(T̂n) = diam(T̂0)

2n
.

That is, ∣∣( f (z)− f (z0)
)− f ′(z0)(z − z0)

∣∣< ϵ′
diam(T̂0)

2n
.

Hence ∣∣∣∣∫
Tn

(
f (z)− (

f (z0)+ f ′(z0)(z − z0)
))

d z

∣∣∣∣≤ ϵ′|Tn |diam(T̂0)

2n
= ϵ′|T0|diam(T̂0)

4n
.

That is, ∣∣∣∣∫
Tn

f (z)d z −
∫

Tn

(
f (z0)+ f ′(z0)(z − z0)

)
d z

∣∣∣∣≤ ϵ′|T0|diam(T̂0)

4n
.
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Now it is left to reader to verify by using first fundamental theorem of calculus that,∫
Tn

(
f (z0)+ f ′(z0)(z − z0)

)
d z = 0.

Hence ∣∣∣∣∫
Tn

f (z)d z

∣∣∣∣≤ ϵ′|T0|diam(T̂0)

4n
.
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Then for ϵ′ small enough such that ϵ′|T0|diam(T̂0)

< ϵ,

∣∣∣∣∫
Tn

f (z)d z

∣∣∣∣< ϵ

4n

which is a contradiction to (∗).

Thus, ∣∣∣∣∫
T0

f (z)d z

∣∣∣∣< ϵ ∀ϵ> 0

=⇒
∫

T0

f (z)d z = 0.

□

THEOREM 4 (Cauchy’s Theorem of Polygonal Paths).

Let Ω ⊆ C be a convex and γz1→z2→···→zn→z1 be a closed polygonal path and suppose

f :Ω−→C be holomorphic. Then∫
γz1→z2→···→zn→z1

f (z)d z = 0.
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PROOF. Proof is by using induction. For the base case, we take n = 3 because for

n = 1,2 we have nothing to prove. For n = 3 Goursat’s theorem tells us that∫
γ

f (z)d z = 0

where γ is a closed polygonal path with 3 vertices.

Assume the result is proved for up to n −1. Then,∫
γz1→z2→···→zn→z1

f (z)d z =
∫
γz1→z2→···→zn−1→z1

f (z)d z +
∫
γzn−1→zn→z1→zn−1

f (z)d z

= 0+0 = 0

□


