Complex Analysis Prof. Pranav Haridas Kerala School of Mathematics Lecture No – 22 Cauchy-Goursat Theorem

In the last lecture we laid the topological framework to state Cauchy's theorem.

(Refer Slide Time: 00:30)

Cauchy's Theorem

Let $\Omega \subseteq \mathbb{C}$ be open and $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic on Ω .

(*i*) If $\gamma_0 : [a, b] \longrightarrow \Omega$ and $\gamma_1 : [c, d] \longrightarrow \Omega$ are rectifiable curves from z_0 to z_1 and suppose γ_0 is homotopic to a reparametrization of γ_1 , then

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

(*ii*) If $\gamma_0 : [a, b] \longrightarrow \Omega$ and $\gamma_1 : [c, d] \longrightarrow \Omega$ are closed rectifiable curves such that γ_0 is homotopic as closed curves to a reparametrization of γ_1 , then

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

Cauchy's theorem is a very powerful tool in the sense that it can be used to compute the integral of f over any rectifiable curve by shifting the curve via homotopy to a contour over which the integral can be computed easily.

We will now state variant of the Cauchy's theorem. It essentially says the same.

Cauchy's Theorem-II

Let $\Omega \subseteq \mathbb{C}$ be open and $f : \Omega \longrightarrow \mathbb{C}$ is holomorphic on Ω . Suppose $\gamma_0 : [a, b] \longrightarrow \Omega$ is a rectifiable curve which is null-homotopic. Then

$$\int_{\gamma_0} f(z) dz = 0.$$

Let us compare the two variance of Cauchy's theorem.

Cauchy's theorem \implies Cauchy's theorem-II is immediate, because in the part (ii) of Cauchy's theorem, if we take γ_1 to be a constant curve, then the hypothesis of Cauchy's theorem-II is satisfied. Conclusion follows from the fact that $\int_{\gamma_1} f(z) dz = 0$, where γ_1 is a constant curve.

Proving the other implication is non-trivial. We may put that as a proposition.

PROPOSITION 1. Cauchy's theorem-II \implies Cauchy's theorem.

PROOF. Here we will prove part (i) of Cauchy's theorem and leave part (ii) as an exercise to the reader.

(Refer Slide Time: 07:26)

2

Let γ_0 : $[a, b] \longrightarrow \Omega, \gamma_1$: $[a, b] \longrightarrow \Omega$ such that $\gamma_0 \sim \gamma_1$ with fixed end points.

 $\gamma_0 + (-\gamma_1) \sim \gamma_1 + (-\gamma_1)$ with fixed end points

~ γ_2 with fixed end points

where $\gamma_2 : [a, b] \longrightarrow \Omega$ is such that $\gamma_2(t) = z_0 = \gamma_0(a)$.

By Cauchy's theorem-II, we have

$$\int_{\gamma_0+(-\gamma_1)} f(z)dz = 0 \iff \int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz.$$

EXAMPLE 2. Let $f : \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$ given by $f(z) = \frac{1}{z}$. Consider $\gamma(t) = e^{it}$, $t \in [0, 2\pi]$. Then

$$\int_{\gamma} f(z) dz = 2\pi i.$$

THEOREM 3 (Goursat's Theorem).

Let $\Omega \subseteq \mathbb{C}$, $f : \Omega \longrightarrow \mathbb{C}$ be holomorphic and $z_1, z_2, z_3 \in \Omega$ such that the convex hull of z_1, z_2, z_3 is contained in Ω . Then

$$\int_{\gamma_{z_1\to z_2\to z_3\to z_1}} f(z)dz = 0.$$

(Refer Slide Time: 16:40)

PROOF. Let us denote the curve $\gamma_{z_1 \rightarrow z_2 \rightarrow z_3 \rightarrow z_1}$ by T_0 .

Suppose

$$\left|\int_{T_0} f(z) dz\right| \ge \epsilon$$

for some $\epsilon > 0$. Let z_{12} be the midpoint of the straight line joining z_1 and z_2 . Similarly z_{23}, z_{31} be the midpoints of straight-line joining z_2 and z_3 , and z_3 and z_1 respectively. Then

$$\left|\int_{T_0} f(z)dz\right| = \left|\int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \int_{\gamma_3} f(z)dz + \int_{\gamma_4} f(z)dz\right|,$$

where,

 $\gamma_1 = \gamma_{z_1 \to z_{12} \to z_{31} \to z_1}, \gamma_2 = \gamma_{z_2 \to z_{23} \to z_{12} \to z_2}, \gamma_3 = \gamma_{z_3 \to z_{31} \to z_{23} \to z_3} \text{ and } \gamma_4 = \gamma_{z_{12} \to z_{23} \to z_{31} \to z_{12}}.$ Thus,

$$\epsilon \leq \left| \int_{T_0} f(z) dz \right| \leq \left| \int_{\gamma_1} f(z) dz \right| + \left| \int_{\gamma_2} f(z) dz \right| + \left| \int_{\gamma_3} f(z) dz \right| + \left| \int_{\gamma_4} f(z) dz \right|.$$

Hence at least one of γ_1 , γ_2 , γ_3 and γ_4 , which shall be denoted as T_1 , must satisfy

$$\left|\int_{T_1} f(z) dz\right| \geq \frac{\epsilon}{4}.$$

Note that $|T_1| = \frac{|T_0|}{2}$.

Let \hat{T}_i denote the convex hull of T_i and let diam $(\hat{T}_i) = \sup \{|z - w| : z, w \in \hat{T}_i\}$. (Refer Slide Time: 25:31)

Now, diam $(\hat{T}_1) = \frac{\text{diam}(\hat{T}_0)}{2}$. By repeating the process above, we get T_0, T_1, T_2, \cdots such that

$$\left|\int_{T_n} f(z) dz\right| \ge \frac{\epsilon}{4^n} \longrightarrow (*)$$

Also observe that $\hat{T}_0 \supset \hat{T}_1 \supset \cdots$.

$$|T_n| = \frac{|T_0|}{2^n}$$
, diam $(\hat{T}_n) = \frac{\text{diam}(\hat{T}_0)}{2^n}$

Then $|T_n| \to 0$ and diam $(\hat{T}_n) \to 0$ as $n \to \infty$.

Pick $z_n \in \hat{T}_n$ and then $\{z_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence by our choice of \hat{T}_i . By completeness, $z_n \to z_0$ where $z_0 \in \bigcap_{i=0}^{\infty} \hat{T}_i$.

Since *f* is complex differentiable at z_0 , given $\epsilon' > 0$, $\exists \delta > 0$ such that

$$\left| \left(f(z) - f(z_0) \right) - f'(z_0)(z - z_0) \right| < \epsilon' |z - z_0|$$

whenever $|z - z_0| < \delta$.

For large *n*, $\hat{T}_n \subset D(z_0, \delta)$. Hence $|z - z_0| < \text{diam}(\hat{T}_n) = \frac{\text{diam}(\hat{T}_0)}{2^n}$. That is,

$$\left| \left(f(z) - f(z_0) \right) - f'(z_0)(z - z_0) \right| < \epsilon' \frac{\operatorname{diam}(\hat{T}_0)}{2^n}$$

Hence

$$\left| \int_{T_n} \left(f(z) - \left(f(z_0) + f'(z_0)(z - z_0) \right) \right) dz \right| \le \epsilon' |T_n| \frac{\operatorname{diam}(\hat{T}_0)}{2^n} = \epsilon' |T_0| \frac{\operatorname{diam}(\hat{T}_0)}{4^n}$$

That is,

$$\left| \int_{T_n} f(z) dz - \int_{T_n} \left(f(z_0) + f'(z_0)(z - z_0) \right) dz \right| \le \epsilon' |T_0| \frac{\operatorname{diam}(\hat{T}_0)}{4^n}.$$

(Refer Slide Time: 34:17)

Now it is left to reader to verify by using first fundamental theorem of calculus that,

$$\int_{T_n} \left(f(z_0) + f'(z_0)(z - z_0) \right) dz = 0$$

Hence

$$\left| \int_{T_n} f(z) dz \right| \le \epsilon' |T_0| \frac{\operatorname{diam}(\hat{T}_0)}{4^n}$$

6

Then for ϵ' small enough such that $\epsilon'|T_0| \frac{\operatorname{diam}(\hat{T}_0)}{<}\epsilon$,

$$\left|\int_{T_n} f(z) dz\right| < \frac{\epsilon}{4^n}$$

which is a contradiction to (*).

Thus,

$$\left| \int_{T_0} f(z) dz \right| < \epsilon \quad \forall \epsilon > 0$$
$$\implies \int_{T_0} f(z) dz = 0.$$

L			
L			
L	_	_	I

THEOREM 4 (Cauchy's Theorem of Polygonal Paths).

Let $\Omega \subseteq \mathbb{C}$ be a convex and $\gamma_{z_1 \to z_2 \to \dots \to z_n \to z_1}$ be a closed polygonal path and suppose $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic. Then

$$\int_{\gamma_{z_1\to z_2\to\cdots\to z_n\to z_1}}f(z)dz=0.$$

(Refer Slide Time: 40:22)

PROOF. Proof is by using induction. For the base case, we take n = 3 because for n = 1,2 we have nothing to prove. For n = 3 Goursat's theorem tells us that

$$\int_{\gamma} f(z) dz = 0$$

where γ is a closed polygonal path with 3 vertices.

Assume the result is proved for up to n - 1. Then,

$$\int_{\gamma_{z_1 \to z_2} \to \dots \to z_n} f(z) dz = \int_{\gamma_{z_1 \to z_2} \to \dots \to z_{n-1} \to z_1} f(z) dz + \int_{\gamma_{z_{n-1} \to z_n \to z_1 \to z_{n-1}}} f(z) dz$$
$$= 0 + 0 = 0$$

-	-	-		
			L	
			L	
			L	