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PROBLEM 1. Let γ1 : [a,b] −→C and γ2 : [c,d ] −→C be such that γ1(b) = γ2(c). Then

|γ1 +γ2| = |γ1|+ |γ2|.

SOLUTION 1. The first observation is that if you look at a continuous re-parametrization

of a given curve, then the re-parameterized curve also will have the same arc length. This

was given as an exercise to the reader to verify.

Assuming this exercise, without loss of generality, we may assume that b = c.
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Let ϵ > 0 be given. Let P : a = t0 < t1 < ·· · < b = tk = c < tk+1 < ·· · < tn = b be a

partition of [a,d ] = [a,b]∪ [b,d ] such that

(1) |γ1 +γ2|−
n∑

j=1

∣∣(γ1 +γ2)(t j )− (γ1 +γ2)(t j−1)
∣∣< ϵ

3

and such that

(2) |γ1|−
k∑

j=1

∣∣γ1(t j )−γ1(t j−1)
∣∣< ϵ

3
,

(3) |γ2|−
n∑

j=k+1

∣∣γ2(t j )−γ2(t j−1)
∣∣< ϵ

3
.

Existence of such a partition can always ensure because there exists a partition Q1 such

that (1) is satisfied, similarly there exists partitions Q2 and Q3 of [a,b] and [b,d ] respec-

tively such that (2) and (3) are satisfied. Now if we take a common refinement of Q1,Q2

and Q3, then all these conditions are satisfied.
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Then,

∣∣|γ1 +γ2|−
(|γ1|+ |γ2|

)∣∣≤ ∣∣∣∣∣|γ1 +γ2|−
n∑

j=1

∣∣(γ1 +γ2)(t j )− (γ1 +γ2)(t j−1)
∣∣∣∣∣∣∣

+
∣∣∣∣∣|γ1|+ |γ2|−

n∑
j=1

∣∣(γ1 +γ2)(t j )− (γ1 +γ2)(t j−1)
∣∣∣∣∣∣∣

< ϵ

3
+

∣∣∣∣∣|γ1|−
k∑

j=1

∣∣γ1(t j )−γ1(t j−1)
∣∣∣∣∣∣∣+

∣∣∣∣∣|γ2|−
n∑

j=k+1

∣∣γ2(t j )−γ2(t j−1)
∣∣∣∣∣∣∣

< ϵ

3
+ ϵ

3
+ ϵ

3
= ϵ

Since ϵ that was chosen was arbitrary, we have

|γ1 +γ2| = |γ1|+ |γ2|.
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PROBLEM 2. Let γ : [a,b] −→C be a curve. Define ℓ : [a,b] −→R to be ℓ(t ) := ∣∣γ ↾[a,t ]
∣∣.

Then ℓ is a continuous function.

SOLUTION 2. Given t ∈ [a,b], we shall prove that ℓ is left continuous at t . This is

enough since right continuity follows by considering the length corresponding to (−γ).
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Let ϵ> 0 be given. Since γ is uniformly continuous on [a,b], ∃δ′ such that

|γ(s)−γ(t )| < ϵ

2

whenever |t − s| < δ′.
Let P : a = t0 < t1 < ·· · < tn = t be such that

∣∣γ ↾[a,t ]
∣∣− n∑

j=1
|γ(t j )−γ(t j−1)| < ϵ

2
.
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Let δ< min(δ′, |tn − tn−1|) and t ′ ∈ (t −δ, t ].

By considering the refinement, a = t0 < t1 < ·· · < tn = t ′ < tn+1 = t ,

∣∣γ ↾[a,t ]
∣∣−n+1∑

j=1

∣∣γ(t j )−γ(t j−1)
∣∣< ϵ

2
.

Hence, (∣∣γ ↾[a,t ′]
∣∣+ ∣∣γ ↾[t ′,t ]

∣∣)−(
n∑

j=1

∣∣γ(t j )−γ(t j−1)
∣∣)− ∣∣γ(t )−γ(t ′)

∣∣< ϵ

2
.

Now regrouping the above equation,(∣∣γ ↾[a,t ′]
∣∣− n∑

j=1

∣∣γ(t j )−γ(t j−1)
∣∣)+ (∣∣γ ↾[t ′,t ]

∣∣− ∣∣γ(t )−γ(t ′)
∣∣)< ϵ

2
.

Since
∣∣γ ↾[a,t ′]

∣∣> n∑
j=1

∣∣γ(t j )−γ(t j−1)
∣∣, we have

∣∣γ ↾[a,t ′]
∣∣− n∑

j=1

∣∣γ(t j )−γ(t j−1)
∣∣= c > 0.
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Thus, ∣∣γ ↾[t ′,t ]
∣∣− ∣∣γ(t )−γ(t ′)

∣∣< ϵ

2
− c < ϵ

2
.

Hence, ∣∣γ ↾[t ′,t ]
∣∣< ϵ

2
+ ϵ

2
= ϵ.

Therefore, ∣∣γ ↾[t ′,t ]
∣∣< ϵ.

=⇒ ∣∣γ ↾[a,t ]
∣∣− ∣∣γ ↾[a,t ′]

∣∣< ϵ.

That is,

ℓ(t )−ℓ(t ′) < ϵ.
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PROBLEM 3. Let f (z) = 1

z2 −1
and γ : [0,2π] −→ C be the curve given by γ(t ) = 2e i t .

Compute ∫
γ

f (z)d z.
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SOLUTION 3. We can decompose f into partial fractions,

f (z) = 1

z2 −1
= 1

2

(
1

z −1

)
− 1

2

(
1

z +1

)
.

Since γ(t ) = 2e i t , we have∫
γ

f (z)d z = 1

2

∫
γ

1

z −1
d z − 1

2

∫
γ

1

z +1
d z

= 1

2

∫ 2π

0

2i e i t

(2e i t −1)
d t − 1

2
d t

∫ 2π

0

2i e i t

2e i t +1
d t

(Refer Slide Time: 27:57)

Consider
1

2

∫ 2π

0

2i e i t

(2e i t −1)
d t . Since 2e i t −1 = 2cos t −1+ i 2sin t , we have

1

2

∫ 2π

0

2i e i t

(2e i t −1)
d t = i

∫ 2π

0

e i t
(
2e−i t −1

)∣∣2e i t −1
∣∣2 d t

= i
∫ 2π

0

(2−cos t )− i sin t

5−4cos t
d t

=
∫ 2π

0

sin t

5−4cos t
d t + i

∫ 2π

0

(2−cos t )

5−4cos t
d t .

Now by computing the integral of real valued functions on the RHS, we will get,∫ 2π

0

sin t

5−4cos t
d t = 0
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and ∫ 2π

0

(2−cos t )

5−4cos t
d t =π.

Hence,
1

2

∫
γ

1

z −1
d z = 1

2

∫ 2π

0

2i e i t

(2e i t −1)
d t = iπ.

By a similar computation,
1

2

∫
γ

1

z +1
d z = iπ.

Hence, ∫
γ

1

z2 −1
d z = iπ− iπ= 0.
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EXERCISE 4. Let γ(t ) = 1+e i t . Compute∫
γ

1

z2 −1
d z.

PROBLEM 5. Prove that the function f (z) = 1

z
does not have an anti-derivative in

C\ {0}.

SOLUTION 4. Let us consider γ(t ) = e i t on [0,2π].

If f (z) had an anti-derivative in C\ {0}, say F , then∫
γ

f (z)d z = F (1)−F (1) = 0.
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Let us compute
∫
γ

f (z)d z.

∫
γ

1

z
d z =

∫ 2π

0

i e i t

e i t
d t = i

∫ 2π

0
d t = 2πi ̸= 0.

Therefore f (z) = 1

z
does not have an anti-derivative.

PROBLEM 6. LetΩ⊆C be an open subset of C and f , g :Ω−→C be holomorphic. Let

γ : [a,b] −→Ω be a rectifiable curve. Then

∫
γ

f (z)g ′(z)d z = f (z1)g (z1)− f (z0)g (z0)−
∫
γ

f ′(z)g (z)d z.

where z0 and z1 are the initial and terminal point of γ respectively.

SOLUTION 5. Let F (z) = ( f (z)g (z))′. By the fundamental theorem of calculus,

(4)
∫
γ

F (z)d z = f (z1)g (z1)− f (z0)g (z0)
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By product rule, F (z) = f ′(z)g (z)+ f (z)g ′(z).

(5)
∫
γ

F (z)d z =
∫
γ

f ′(z)g (z)d z +
∫
γ

f (z)g ′(z)d z.

By (4) and (5) , we have∫
γ

f (z)g ′(z)d z = f (z1)g (z1)− f (z0)g (z0)−
∫
γ

f ′(z)g (z)d z.


