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Second Fundamental Theorem of Calculus

In this lecture, we will be proving a second fundamental theorem of calculus, which is

the complex analog of the second fundamental theorem of calculus, which you would

have already seen in the real setting. But before we do that, let us recall the equivalent

formulation of open connectedness in the complex plane.
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Recall: ForΩ⊆C open, the following are equivalent

i Ω is connected.

ii Ω is path-connected.

iii Ω is polygonally path-connected.

Polygonal path is the concatenation of straight line curves. γz1→z2→···→zn used to denote

a polygonal path obtained by concatenating line joining z j to z j+1.

THEOREM 1 (Second Fundamental Theorem of Calculus). LetΩ⊆C be a non-empty

open connected subset and let f :Ω−→C be a continuous function such that∫
η

f (z)d z = 0
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whenever η is a closed polygonal path contained inΩ. Fix z0 ∈Ω and define

F (z1) =
∫
γ

f (z)d z

where γ is a polygonal path from z0 to z1. Then F is well-defined holomorphic function

such that F ′(z1) = f (z1) ∀z1 ∈Ω.
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PROOF. First, let us prove that the F defined as in the theorem is a well defined func-

tion. That is it is independent of the polygonal path we choose.

Suppose γ1 and γ2 be polygonal paths from z0 to z1. Then γ1+(−γ) is a closed polyg-

onal path.

Hence,

0 =
∫
γ1+(−γ)

f (z)d z =
∫
γ1

f (z)d z +
∫
−γ2

f (z)d z =
∫
γ1

f (z)d z −
∫
γ2

f (z)d z

=⇒
∫
γ1

f (z)d z =
∫
γ2

f (z)d z.

Therefore F (z1) is well defined.

Let z1 ∈Ω and let D(z1,r ) ⊆Ω. Let γ be a polygonal path from z0 to z1.

Pick z2 ∈ D(z1,r ) and γz1→z2 be the straight line from z1 to z2. Then γ+γz1→z2 is a

polygonal path from z0 to z2.
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Now,

F (z2)−F (z1) =
∫
γ+γz1→z2

f (z)d z −
∫
γ

f (z)d z

=
∫
γz1→z2

f (z)d z

(Refer Slide Time: 15:55)

∣∣F (z2)−F (z1)− f (z1)(z2 − z1)
∣∣= ∣∣∣∣∣

∫
γz1→z2

f (z)d z − f (z1)(z2 − z1)

∣∣∣∣∣
=

∣∣∣∣∣
∫
γz1→z2

(
f (z)− f (z1)

)
d z

∣∣∣∣∣ .

Let ϵ> 0 be given. Then by picking r small enough, we have

∣∣F (z2)−F (z1)− f (z1)(z2 − z1)
∣∣≤ ϵ|z2 − z1|.

Then,

lim
z2→z1

z2∈Ω\{z1}

∣∣∣∣F (z2)−F (z1)

z2 − z1
− f (z1)

∣∣∣∣≤ ϵ.

Hence

lim
z2→z1

z2∈Ω\{z1}

F (z2)−F (z1)

z2 − z1
= f (z1)
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That is,

F ′(z1) = f (z1).

□

PROPOSITION 2. Let Ω ⊆ C be a non-empty connected and f :Ω −→ C be continuous

function. Let γ : [a,b] −→ Ω be a rectifiable curve in Ω from z1 to z2. Then given ϵ > 0,

there exists a polygonal path σ : [a,b] −→Ω from z1 to z2 such that

∣∣∣∣∫
γ

f (z)d z −
∫
σ

f (z)d z

∣∣∣∣< ϵ.

PROOF. We know thatγ([a,b]) is compact set. Let U = {D(z0,r0),D(z1,r1), · · · ,D(zn .rn)}

be a finite cover such thatγ([a,b]) ⊂
n⋃

k=0
D(zk ,rk ) and D(zk ,rk ) ⊂Ω for each k = 0,1, · · · ,n.

Let K =
n⋃

k=0
D(zk ,rk ). Then K ⊂Ω and by Heine-Borel theorem, K is compact.

Since K is compact, f is uniformly continuous on K . Hence for given ϵ> 0, we have

δ> 0 such that

∣∣ f (z)− f (w)
∣∣< ϵ

2|γ|

whenever |z −w | < δ in K .

Let P : a = t0 < t1 < ·· · < tn = b be a partition such that |P | < min(δ,Lebesgue number of U )

and

∣∣∣∣∣
∫
γ

f (z)d z −
n∑

j=1
f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)∣∣∣∣∣< ϵ

2
.
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Let σ be a polygonal path such that

σ ↾[t j−1,t j ]≡ γγ(t j−1)→γ(t j ).

∣∣∣∣∫
γ

f (z)d z −
∫
σ

f (z)d z

∣∣∣∣≤
∣∣∣∣∣
∫
γ

f (z)d z −
n∑

j=1
f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)∣∣∣∣∣
+

∣∣∣∣∣ n∑
j=1

f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)−∫
σ

f (z)d z

∣∣∣∣∣

∣∣∣∣∫
γ

f (z)d z −
∫
σ

f (z)d z

∣∣∣∣≤
∣∣∣∣∣
∫
γ

f (z)d z −
n∑

j=1
f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)∣∣∣∣∣
+

∣∣∣∣∣ n∑
j=1

f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)−∫
σ

f (z)d z

∣∣∣∣∣ .
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Now,

∣∣∣∣∣
∫
σ

f (z)d z −
n∑

j=1
f
(
γ(t j−1

)(
γ(t j )−γ(t j−1)

)∣∣∣∣∣=
∣∣∣∣∣
∫
σ

f (z)d z −
n∑

j=1
f
(
γ(t j−1

)(
σ(t j )−σ(t j−1)

)∣∣∣∣∣
=

∣∣∣∣∣
∫
σ

f (z)d z −
n∑

j=1

∫
σ↾[t j−1,t j ]

f
(
γ(t j−1)

)
d z

∣∣∣∣∣
=

∣∣∣∣∣ n∑
j=1

∫
σ↾[t j−1,t j ]

(
f (z)− f

(
γ(t j−1)

))
d z

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣
∫
σ↾[t j−1,t j ]

(
f (z)− f

(
γ(t j−1)

))
d z

∣∣∣∣∣
≤

n∑
j=1

ϵ

2|γ|
∣∣σ(t j )−σ(t j−1)

∣∣
≤ ϵ

2|γ|
n∑

j=1

∣∣γ(t j )−γ(t j−1)
∣∣

≤ ϵ

2
.

Hence,

∣∣∣∣∫
γ

f (z)d z −
∫
σ

f (z)d z

∣∣∣∣< ϵ.
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□

Let us define two classes of curves, which will be of greatest interest. They are very

special curves with a much better regularity.

DEFINITION (Smooth Curves). We say that a curve γ : [a,b] −→ C is a smooth curve

if γ is continuously differentiable and γ′(t ) ̸= 0 ∀ t ∈ [a,b].

The straight line path, for example, is a smooth curve. The most of the curves we

have actually encountered are smooth curves. In fact the equation of a circle is a smooth

curve.

DEFINITION (Contours). We say that a curve γ : [a,b] −→ C is a contour if it is the

concatenation of finitely many smooth curves.

For example, the polygonal paths are contours, which are obtained by concatenation

of finitely many straight line paths.


