Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Lecture No - 18
First Fundamental Theorem of Calculus
In this lecture, we will study the complex analog of the fundamental theorem of calculus,
rather the first fundamental theorem of calculus. In a course on real analysis, you would
have seen a version of the first fundamental theorem of calculus. in a course on real
analysis, you would have seen a version of the first fundamental theorem of calculus.
The complex analog is quite similar.
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THEOREM 1. Let Q) be an open subset of C and f : Q) — C be a continuous function.
Let F : Q — C be an antiderivative of f, i.e., F is holomorphicon Q and F'(z) = f(z)V z €
Q. Supposey is a rectifiable curve defined on Q). Then

ff(Z)dZ = F(z1) — F(2)
Y

where zy is the initial point of y and z; is the terminal point of y.
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PROOE. Lety:[a,b] — Q. Suppose vy is continuously differentiable. Then

b
ff(z)dz:f fly@®)y'at.
Y a

Since F'(z) = f(z)Vz € Q,

b
ff(z)dz:f F'(y)y'(ndt.
Y a

Now it is left as an exercise to the reader to check that
F'ym)y' 0 =(Foy)

which follows from chain rule and Cauchy-Riemann equations.

Hence,

b
ff(z)dz:f (Foy) (tdt
Y a

=F(y(b)-F(y(@)

= F(z1) — F(2).

So if the curve y is continuously differentiable, our work becomes extremely easy and we
will be able to conclude the complex analog of fundamental theorem of calculus from
the fundamental theorem of calculus proved in the real analysis setting. However, we
have put more generality here. We are only assuming that our curve is rectifiable. So we
will have to work a bit more to prove our result in the complex analog case.
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Given € > 0, let

Qez{te[a,b]:

fr f(@)dz—(F(y(t)) —F (y(@))| <e€ly lawm |, Ya< o < t}.
Y lla,to)

It is enough to show that Q. is both open and closed.

Let ty be a limit point of Qg, i.e., I{t;}nen © Qe such that ¢, — #. If ¢, > £, then
to € Q.

Hence, we may assume that z,, { f.

[ r@dz=(F(rew) - (ra)
Y lla, o]

= f f@dz—(F(y(to)) = F(y(tn)) + F (y(10)) - F (y(@))
Yla a1+ Nitn, 1)

IA

+

[, r@a=(EGe)-rr@)|«|[ e () -Fir)
Ylla,tn] Y ltn,tol

<ely Nam|+ MY Now |+ |F (y(0) = F ()|

Given €’ > 0, we can pick ¢, arbitrarily close to fy such that

el Nata| + MY Nt +|F (Y(20)) = F (y(t))| < €|¥ l1a,1]| + (M + D)€",

Hence,

f[ f(@dz—(F(y(t)) - F(y(@))| <€y la | + M+ 1e
Y la,t0
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Since €' is arbitrary,

—

f[ f@dz—(F(y(t))) - F(y(@))| <€y lawn]-
Ylla tol

Hence €. is closed.
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Claim: ). is open.
Let ty € Q.. For 6 > 0 such that (ty — 9, ty + 0) < [a, b], we have (tg— 9, tp] < Q..
For t € [1y, ty + 0).

Since F is holomorphic at y(ty), given € > 0,36 > 0 such that

F(y() - F (y(t0)

- flriw)|5

Y (8) —y(t)
whenever ¢ € (ty, fp + 0).
Then
|F(y(®) = F(y(t0) = f (y()) (y () =y (10))| < g |y (8) =y (10)]
€
= 5 |Y [[to,t]|'
Now,

flr@) (y@® -yw) = f fy(w)dz.

Y g,
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Let 6 be small enough such that

|F (r) - f (y(0))] < g.

Then,

f f@dz— f(y() (y(©) —y)| < f r |f(2) = [ (y(t0))| dz
Yl 1l Y1l

€
= > |Y Mo, 11 |

Hence by triangle inequality, we have

<ely lu,n| — ().

f  f@dz=(Flyn)-Fyw))
Y lito, 1]

We know that, since £y € Q., we have

<ely la | — ().

| r@az(Firuw)-F(y@)
Ylla,to]
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Hence,

<ely lawl| +ely li.al

[ rdz—(Flyw)-Flra)
Yllan

<ely Nl

Thisistrue Vit € (ty, to+96) = (tr— 0, fp +0) < Q..
Hence ), is open.
Since a € Q, we have by connectedness of [a, b], Q. = [a, D].

Therefore, V€ > 0, we have

fyf(Z)dZ— (F(y(b)) - F(y@))| elyl.

— [ fardz=Fe - Fz)
Y
where z; = y(b) and zp = y(a).

EXAMPLE 2.

Z

¢ We know that Ze

= e°. Hence, if y is a curve from z; to z,, we have
z

f e’dz = e —e.
Y



. % (E) = z. Then,

2
2_ 2

z5—2z
fzdz: 2 1
y 2

where z; and z; are initial and terminal point of y respectively.

d 1 1
e On C\ {0}, we have — (——) =—.
dz\ z) z?

where z; and z; are initial and terminal point of y respectively.
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e Let F(z) = Z an(z— z)" be a power series converging in D(zg, R).
&
an n+1 /
LetG(z) = ) ——(z~20)""! on D(z, R). Then G'(z) = F(2).
n—ont1

(e o]

oo 0
n § Qn n+1 § an n+1
E aAn(Z—Z = Z2 — & - Z1 — & .
fy n{ ) n+1(2 0) n+1(1 0)

n=0 n=0 n=0




