Complex Analysis ### **Prof. Pranav Haridas** #### **Kerala School of Mathematics** Module No - 3 #### Lecture No - 16 # **Curves in the Complex Plane** In the last few weeks we explore the notion of differentiability in great detail. Just like in the real analysis setting, the notion of complex differentiability is also tied down together with notion of integration. And among the notions of integration, we will be most interested in integral along curves or rather line integrals. We will plunge into that in the next few weeks but in this lecture let us review and recall the notion of curve and the various properties of curves. Let us begin this lecture by recalling what are curves? (Refer Slide Time: 00:59) A continuous parametrized curve is a continuous map $\gamma: [a,b] \to \mathbb{C}$. If a=b, then the curve is trivial. The pt. $\gamma(a)$ is called the initial point of γ and $\gamma(b)$ is called the terminal point. DEFINITION 1. A continuous parametrized curve is a continuous map γ : $[a, b] \longrightarrow \mathbb{C}$. If a = b, then the curve is trivial. The point $\gamma(a)$ is called the initial point of γ and $\gamma(b)$ is called the terminal point. γ is said to be a closed curve if $\gamma(a) = \gamma(b)$. We say that γ is a simple curve if $\gamma(t) \neq \gamma(t')$ with the exception of t = a, t' = b. The image $\gamma([a, b])$ of γ is called the image of the curve. EXAMPLE 1. • Let $z_1, z_2 \in \mathbb{C}$, $$\gamma_{z_1 \to z_2} := (1 - t)z_1 + tz_2, \qquad t \in [0, 1].$$ If $z_1 = z_2$, then $\gamma_{z_1 \to z_2}$ is a closed curve but not simple. • Define $\gamma(\theta) = z_0 + re^{i\theta}$, $\theta \in [0, 2\pi]$. Then image of curve is a circle of radius r centered z_0 . Here the initial and terminal points is $z_0 + r$. Hence γ is a simple closed curve. Now consider γ_1 and γ_2 defined by $$\gamma_1(\theta) = z_0 + re^{2\pi i\theta}, \ \theta \in [0,1]$$ $$\gamma_2(\theta) = z_0 + re^{2i\theta} \ \theta \in [0, 2\pi].$$ Then γ_1 is a simple closed curve having initial and terminal point $z_0 + r$ and image of γ_1 is same as that of γ , but still we treat them as different curves as domain of γ and γ_1 are different. In the case of γ_2 , it looks similar to γ , however γ_2 is not a simple closed curve as for any point in the image of γ_2 we have two preimages. Now we would like to somehow identify γ and γ_1 , and the right notion to look at for this purpose of curves is the continuous reparametrization. (Refer Slide Time: 10:21) DEFINITION 2. We say that a curve $\gamma_2 : [a_2, b_2] \longrightarrow \mathbb{C}$ is a continuous reparametrization of $\gamma_1 : [a_1, b_1] \longrightarrow \mathbb{C}$ if \exists a homeomorphism $\varphi : [a_1, b_1] \longrightarrow [a_2, b_2]$ such that $\varphi(a_1) = a_2$ and $\varphi(b_1) = b_2$ and such that $\gamma_2(\varphi(t)) = \gamma_1(t), \ \forall \ t \in [a_1, b_1]$. By the definition, reparametrized curves must have the same initial and terminal point and also the image must be same. Hence $\gamma_{z_2 \to z_1}$ is not a reparametrization of $\gamma_{z_1 \to z_2}$ EXERCISE 2. Continuous reparametrization is an equivalence relation. DEFINITION 3. We say that a curve $-\gamma$ is a reversal of a curve $\gamma:[a,b]\to\mathbb{C}$ if $-\gamma:[-b,-a]\to\mathbb{C}$ and $-\gamma(t)=\gamma(-t)$ $$= \gamma(t) = \gamma(-t).$$ Example: $\gamma_{\overline{z}_2 \to \overline{z}_1} = -\gamma_{\overline{z}_1 \to \overline{z}_2} = [-1, 0]$ EXAMPLE 3. Let $\gamma_{z_2 \to z_1}$ be the straight line joining z_2 to z_1 , then $$\gamma_{z_2 \to z_1} \equiv -\gamma_{z_1 \to z_2}$$ where $\gamma_{z_1 \to z_2}$ is a straight line joining z_1 to z_2 . Now let us define the notion of concatenation. (Refer Slide Time: 18:31) Let $$\Upsilon_1: [a_1, b_1] \rightarrow \mathbb{C}$$ and $\Upsilon_2: [a_2, b_2] \rightarrow \mathbb{C}$ be two curves such that the terminal pt. If Υ_1 coincides with the initial point of Υ_2 . Let Υ_2 be a reparamterization of Υ_2 through $Q: [a_2, b_2) \rightarrow [b_1, b_2 + (b_1 - a_2)]$ i.e. $\Upsilon_2: [b_1, b_2 + b_1 - a_2] \rightarrow \mathbb{C}$ given by Z_1 $T_2(t) = \Upsilon_2(t - (b_1 - a_2))$. Let $\gamma_1: [a_1,b_1] \longrightarrow \mathbb{C}$ and $\gamma_2: [a_2,b_2] \longrightarrow \mathbb{C}$ be two curves such that the terminal point of γ_1 coincides with the initial point of γ_2 . Let $\tilde{\gamma}_2$ be a reparametrization of γ_2 through $\varphi: [a_2,b_2] \longrightarrow [b_1,b_2+(b_1-a_2)]$. That is, $\tilde{\gamma}_2: [b_1,b_2+(b_1-a_2)] \longrightarrow \mathbb{C}$ given by $$\tilde{\gamma}_2(t) = \gamma_2(t - (b_1 - a_2)).$$ Define $$\gamma_1 + \gamma_2 : [a_1, b_2 + b_1 - a_2] \longrightarrow \mathbb{C}$$ by $$(\gamma_1 + \gamma_2)(t) := \begin{cases} \gamma_1(t), & a_1 \le t \le b_1 \\ \tilde{\gamma}_2(t), & b_1 \le t \le b_2 + b_1 - a_2. \end{cases}$$ (Refer Slide Time: 23:23) Exercises: 2) $$\gamma_1 + \gamma_2$$ is a continuous. 3) $(\gamma_1 + \gamma_2) + \gamma_3 = \gamma_1 + (\gamma_2 + \gamma_3)$ #### EXERCISE 4. - $\gamma_1 + \gamma_2$ is continuous. - Let $\gamma_1, \gamma_2, \gamma_3$ be three curves such that terminal point of γ_1 is the initial point of γ_2 and terminal point of γ_2 is the initial point of γ_3 . Then, $$(\gamma_1 + \gamma_2) + \gamma_3 = \gamma_1 + (\gamma_2 + \gamma_3).$$ PROPOSITION 5. Let $\gamma_1, \gamma_2, \tilde{\gamma}_1, \tilde{\gamma}_2$ be curves such that terminal point of γ_1 coincides with the initial point of γ_2 . Let $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ be continuous reparametrization of γ_1 and γ_2 respectively. Then, $$\gamma_1 + \gamma_2 \equiv \tilde{\gamma}_1 + \tilde{\gamma}_2$$ and $$-\gamma_1 = -\tilde{\gamma}_1$$. PROOF. Let $\gamma_1:[a_1,b_1]\longrightarrow \mathbb{C}$ and $\tilde{\gamma}_1:[c_1,d_1]\longrightarrow \mathbb{C}$. Let $\varphi_1:[a_1,b_1]\longrightarrow [c_1,d_1]$ be the homeomorphism such that $\varphi_1(a_1)=c_1$ and $\varphi_1(b_1)=d_1$ and such that $\tilde{\gamma}_1(\varphi_1(t))=\gamma_1(t),\ \forall\ t\in[a_1,b_1]$. Similarly, let $\gamma_2:[a_2,b_2]\longrightarrow \mathbb{C}$ and $\tilde{\gamma}_2:[c_2,d_2]\longrightarrow \mathbb{C}$. Let $\varphi_2:[a_2,b_2]\longrightarrow [c_2,d_2]$ be homeomorphism. (Refer Slide Time: 27:38) Now $$\gamma_1 + \gamma_2 : [a_1, b_2 + b_1 - a_2] \longrightarrow \mathbb{C}$$ and $\tilde{\gamma}_1 + \tilde{\gamma}_2 : [c_1, d_2 + d_1 - c_2] \longrightarrow \mathbb{C}$. Let us define $\psi : [a_1, b_2 + b_1 - a_2] \longrightarrow [c_1, d_2 + d_1 - c_2]$ by $$\psi(t) := \begin{cases} \varphi_1(t), & a_1 \le t \le b_1 \\ \varphi_2(t - b_1 + a_2) + d_1 - c_2, & b_1 \le t \le b_2 + b_1 - a_2. \end{cases}$$ Check that ψ is a homeomorphism. Hence $\gamma_1 + \gamma_2 \equiv \tilde{\gamma}_1 + \tilde{\gamma}_2$. Now to prove other result, $$-\gamma_1: [-b_1, -a_1] \longrightarrow \mathbb{C}$$ and $-\tilde{\gamma}_1: [-d_1, -c_1] \longrightarrow \mathbb{C}$. Since $-\varphi: [-b_1, -a_1] \longrightarrow [-d_1, -c_1]$ and $-\varphi$ is a homeomorphism (Why?) we have the result. EXERCISE 6. $$-(\gamma_1 + \gamma_2) \equiv (-\gamma_1) + (-\gamma_2)$$. (Refer Slide Time: 33:08) Definition of andength. Let $$\gamma: [a,b] \rightarrow \mathbb{C}$$ be a curve. We define the arclength of the curve $$r$$ to be $$|r(t_{g+1}) - r(t_g)|$$ where the supremum is over $n \ge all partions$ $q = t_0 < t_1 < \cdots < t_n = b$. DEFINITION 4 (Arc-length). Let $\gamma:[a,b]\longrightarrow\mathbb{C}$ be a curve. We define the arc-length of the curve γ to be $$|\gamma| := \sup \sum_{j=0}^{n} |\gamma(t_j) - \gamma(t_{j-1})|$$ where the supremum is over n and all partitions $a = t_0 < t_1 < \cdots < t_n = b$. We say that the curve γ is rectifiable if $|\gamma|$ is finite. EXERCISE 7. $|\gamma_1 + \gamma_2| = |\gamma_1| + |\gamma_2|$. DEFINITION 5. A curve γ : $[a,b] \longrightarrow \mathbb{C}$ is said to be continuously differentiable if for each $t_0 \in (a,b)$, $$\gamma'(t_0) = \lim_{\substack{t \to t_0 \\ t \in [a,b] \setminus \{t_0\}}} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}$$ exists and is continuous. (Refer Slide Time: 37:35) Lemma: Let $$g: [a,b] \rightarrow C$$ be cont. Then $$|\int_{a}^{b} g(t) dt| \leq \int_{a}^{b} |g(t)| dt.$$ $$\int_{a}^{b} g(t) dt := \int_{a}^{b} Re g(t) dt + i \int_{a}^{b} 9m(g(t)) dt.$$ LEMMA 8. Let $g:[a,b] \longrightarrow \mathbb{C}$ be continuous. Then $$\left| \int_a^b g(t) dt \right| \le \int_a^b |g(t)| dt.$$ Here, $$\int_a^b g(t)dt := \int_a^b \mathfrak{Re}(g(t))dt + i \int_a^b \mathfrak{Im}(g(t))dt$$. PROOF. Fix $\theta \in \mathbb{R}$, $$\left| \Re \left(e^{i\theta} \int_{a}^{b} g(t) dt \right) \right| = \left| \int_{a}^{b} \Re \left(e^{i\theta} g(t) \right) dt \right|$$ $$\leq \int_{a}^{b} \left| \Re \left(e^{i\theta} g(t) \right) \right| dt$$ $$\leq \int_{a}^{b} \left| e^{i\theta} g(t) \right| dt$$ $$= \int_{a}^{b} |g(t)| dt.$$ Taking supremum, we get $$\left|\int_a^b \mathsf{g}(t)dt\right| \leq \int_a^b |\mathsf{g}(t)|dt.$$ (Refer Slide Time: 41:43) Theorem: Let $$\gamma: [a_1b] \rightarrow \mathbb{C}$$ be a continuously diff. Curve then γ is rectifiable and $|\gamma| = \int |\gamma'(t)|dt$. (Arc-length formula). Theorem 9. Let $\gamma:[a,b] \longrightarrow \mathbb{C}$ be a continuous differentiable curve. Then γ is rectifiable and $$|\gamma| = \int_a^b |\gamma'(t)| dt.$$ The formula $|\gamma| = \int_a^b |\gamma'(t)| dt$ is called the arc-length formula. PROOF. Let $a = t_0 < t_1 < \dots < t_n = b$ be a partition of [a, b]. Using the fundamental theorem of calculus, $$\sum_{j=0}^{n} \left| \gamma(t_j) - \gamma(t_{j-1}) \right| = \sum_{j=0}^{n} \left| \int_{t_{j-1}}^{t_j} \gamma'(t) dt \right|$$ $$\leq \sum_{j=0}^{n} \int_{t_{j-1}}^{t_j} \left| \gamma'(t) \right| dt$$ $$= \int_{a}^{b} \left| \gamma'(t) \right| dt.$$ Hence taking supremum over partitions, we get $$|\gamma| \le \int_a^b |\gamma'(t)| dt.$$ From this, we get $|\gamma|$ is finite and hence a continuous differentiable curve is rectifiable. (Refer Slide Time: 45:39) From this, we get $$|\Upsilon|$$ is finite. Given 270 Let $E_E = \begin{cases} t \in [a,b] : |\Upsilon|_{[a,t']}| > \int_a^{[\tau'(t)]} - \xi(t'-a) \end{cases}$ If $t' \leq t$ To prove the other inequality, consider the following set. Given $\epsilon > 0$, let $$E_{\epsilon} = \left\{ t \in [a,b] : \left| \gamma \upharpoonright_{[a,t']} \right| \ge \int_{a}^{t'} \left| \gamma'(t) \right| dt - \epsilon(t'-a), \forall t' \le t \right\}.$$ **Claim:** E_{ϵ} is closed. Let $t_n \in E_{\epsilon}$ be a sequence converging to t_0 . We want to show that $$|\gamma|_{[a,t']}| \ge \int_a^{t'} |\gamma'(t)dt| - \varepsilon(t'-a), \forall t' \le t_0.$$ For, $t' < t_0$, this is satisfied. Because t_n is a sequence which converges to t_0 . So, if $t' < t_0$ is fixed then there will be t_m for some m which will be greater than t'. Since $t_n \in E_{\varepsilon}$ and $t' < t_m \implies t'$ satisfies the condition. Now let's check the condition for $t' = t_0$. If $\{t_n\}_{n \in \mathbb{N}}$ is a sequence converging to t_0 from the right, again we are done by above argument. Let us assume that $\{t_n\}_{n\in\mathbb{N}}$ is a sequence converging from the left to t_0 . Then we have following observation, $$\left|\gamma \upharpoonright_{[a,t_0]}\right| \ge \left|\gamma \upharpoonright_{[a,t_n]}\right| \ge \int_a^{t_n} |\gamma'(t)| dt - \epsilon(t_n - a).$$ Hence $t_0 \in E_{\epsilon}$. (Refer Slide Time: 52:39) Claim: Ex is open. Let to E Ex. We already know that [to-6, to] $$\subseteq$$ Ex. **Claim:** E_{ϵ} is open. Let $t_0 \in E_{\epsilon}$. We already know that $[t_0 - \delta, t_0] \subset E_{\epsilon}$ for δ small enough. Since γ is continuously differentiable at t_0 , given $\epsilon > 0$, $\exists \delta > 0$ such that $$\left| \frac{\gamma(t) - \gamma(t')}{t - t'} - \gamma'(t_0) \right| \le \frac{\epsilon}{2},$$ whenever $(t - t_0) < \delta$. Then, $$|\gamma'(t_0)(t - t_0)| - |\gamma(t) - \gamma(t_0)| \le \frac{\epsilon}{2}(t - t_0).$$ $$|\gamma(t) - \gamma(t_0)| \ge |\gamma'(t_0)|(t - t_0) - \frac{\epsilon}{2}(t - t_0). \to (*)$$ Since γ' is continuous, we can pick $\delta > 0$ small enough so that for $t \in (t_0, t + \delta)$, $$\int_{t_0}^t |\gamma'(t)| dt \leq \int_{t_0}^t \left(|\gamma'(t_0)| + \frac{\epsilon}{2} \right) dt \leq |\gamma'(t_0)| (t-t_0) + \frac{\epsilon}{2} (t-t_0). \to (**)$$ Using (*) and (**), $$\int_{t_0}^t |\gamma'(t)| dt \le |\gamma(t) - \gamma(t_0)| + \frac{\epsilon}{2} (t - t_0).$$ Now, $$\left|\gamma \upharpoonright_{[t_0,t]}\right| \ge |\gamma(t)-\gamma(t_0)| \ge \int_{t_0}^t |\gamma'(t)| dt - \frac{\epsilon}{2}(t-t_0).$$ Since $t_0 \in E_{\epsilon}$, $$\left|\gamma \upharpoonright_{[a,t_0]}\right| \ge \int_a^{t_0} |\gamma'(t)| dt - \frac{\epsilon}{2}(t_0 - a).$$ # (Refer Slide Time: 01:00:27) $$|\gamma|_{[a,t]}| \ge \int_{a}^{t} |\gamma'(t)| dt - \varepsilon(t-a).$$ If $t \in [a, t_0+\delta)$ $\Rightarrow f_{\varepsilon}$ is open. $f_{\varepsilon} = [a,b]$ Hence, $$|\gamma|_{[a,t]}| \ge \int_a^t |\gamma'(t)| dt - \epsilon(t-a), \forall t \in [a, t_0 + \delta).$$ Then, E_{ϵ} is open and [a, b] is connected $\implies E_{\epsilon} = [a, b]$. Hence $\forall \epsilon > 0$, $$|\gamma| \ge \int_a^b |\gamma'(t)| dt - \epsilon(b-a).$$ Hence, $|\gamma| \ge \int_a^b |\gamma'(t)| dt$. Therefore $$|\gamma| = \int_a^b |\gamma'(t)| dt$$. EXERCISE 10. - $|\gamma_{z_1 \to z_2}| = |z_2 z_1|$. - Let $\gamma(\theta) = z_0 + re^{i\theta}$ for $\theta \in [0, 2\pi]$. Then $|\gamma| = 2\pi r$.