Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Module No - 3
Lecture No - 16

Curves in the Complex Plane

In the last few weeks we explore the notion of differentiability in great detail. Just
like in the real analysis setting, the notion of complex differentiability is also tied down
together with notion of integration. And among the notions of integration, we will be
most interested in integral along curves or rather line integrals. We will plunge into that
in the next few weeks but in this lecture let us review and recall the notion of curve and
the various properties of curves. Let us begin this lecture by recalling what are curves?

(Refer Slide Time: 00:59)

K Lot nowd Pmmthﬁzﬂ* Cwwe (8 & LovHaowt wLab

Al [:9.1 i?] — C. -% a= b Tthen the wwwe e Friviad

#

‘the ?{- Vo) 15 caled The anihal pernt :% Y omd Y(b) ig
Lolled Hre Teminal ‘Pm'-n‘l'-

DEFINITION 1. A continuous parametrized curve is a continuous map vy : [a, b] — C.

If a = b, then the curve is trivial. The point y(a) is called the initial point of y and
v(b) is called the terminal point.
v is said to be a closed curve if y(a) = y(b). We say that y is a simple curve if y(¢) #y(t')
with the exception of t = a, ' = b.

The image y([a, b]) of y is called the image of the curve.
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EXAMPLE 1.

o Letz;,20 €C,

Yz—2 = (1 =10z + tzp, te[0,1].

If z; = 2, theny,, .., is a closed curve but not simple.

e Define y(0) = zo + ret, 6 € [0,27]. Then image of curve is a circle of radius r
centered zy. Here the initial and terminal points is zy + r. Hence vy is a simple
closed curve.

Now consider y; and vy, defined by

Y10) = 2o+ re?™ %, 9 €0,1]

Y2(0) = zg + re?’ 6 € [0,27].

Then vy, is a simple closed curve having initial and terminal point zo + r and
image of 'y, is same as that of -y, but still we treat them as different curves as
domain of y and vy, are different. In the case of y,, it looks similar to 'y, however
2 is not a simple closed curve as for any point in the image of y, we have two

preimages.

Now we would like to somehow identify y and 7y, and the right notion to look at for this

purpose of curves is the continuous reparametrization.
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DEFINITION 2. We say that a curve Y, : [ap, bo] — C is a continuous reparametriza-
tion of y; : [ay, b;] — C if 3 a homeomorphism ¢ : [ay, b1] — [ay, b2] such that ¢(a;) =

a and ¢ (b;) = b, and such that y, (¢ (1)) =y1(t), Y€ [ay, b1l.

By the definition, reparametrized curves must have the same initial and terminal
point and also the image must be same. Hence v, is not a reparametrization of

‘YZ1—>ZZ
EXERCISE 2. Continuous reparametrization is an equivalence relation.

DEFINITION 3. We say that a curve —Y is a reversal of a curve y : [a,b] — C if —y:

[-b,—a] — Cand —y(t) =y(-1)

(Refer Slide Time: 16:54)

- (%) V(-1 .

EW°L .r/ .Ti:.""‘ z, . ‘T"'l""a:.- « [, Uj
i) Y—m—m

i



EXAMPLE 3. Let7y,,_ be the straight line joining z, to z;, then

Yz—z21 = VYz—2
where v, _.,,is a straight line joining z; to 2.

Now let us define the notion of concatenation.
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Lety;:[ay, b1] — Cand y3: [az, bo] — C be two curves such that the terminal point
of y; coincides with the initial point of y,. Let ¥, be a reparametrization of y, through

@ :laz, byl — [b1, b2 + (by — a»)]. Thatis, ¥, : [by, b2 + (b — a2)] — C given by
Y2(8) = y2(t = (b — ap)).

Define

Yi+7yz2:lai, bo+by—a] —C



by

Y1(8), a<t<h
(Y1+72)(0) =
’)72(t), bi<t<by+b;—a.
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EXERCISE 4.
e Y1 +72 is continuous.
e Lety1,72,73 be three curves such that terminal point of y; is the initial point of

Y2 and terminal point of y» is the initial point of y3. Then,
(Y1+7y2)+ys=v1+(y2+73).

PROPOSITION 5. Let y1,Y2,¥1,Y2 be curves such that terminal point of vy, coincides
with the initial point of y,. Let ¥y, and y, be continuous reparametrization of y, and y»

respectively. Then,
Yi+tY2=Y1+7Y2

and

—Y1=-Y1.

PROOE. Let y; : [ay,b;] — C and ¥, : [c1,d1] — C. Let ¢ : [ay, b1] — [c1,d;] be
the homeomorphism such that ¢, (a;) = ¢; and ¢,(b;) = d; and such that y; (¢, (1)) =
Y1(t), Yt € [ay, by]. Similarly, lety, : [a2, bo] — Cand ¥z : [c2, d2] — C. Let @y : [ag, bo] —
[c2, d2] be homeomorphism.
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NOW)/1+Y2 : [dl,b2+b1 —ay] —>Cand)71+)72 : [Cl,d2+d1—02] —C.

Let us define v : [ay, b2 + by — ax] — [c1,d2 + dy — ¢2] by

p1(2), ar<t<h
w(r) =
@2(t—b1 +ay) +dy — ¢, bi<t<by+b—a.

Check that ¥ is a homeomorphism. Hence y; + v2 =71 + ¥2.
Now to prove other result,
—Y1:[=b1,—a1] — Cand -y : [-d;,—c1] — C. Since —¢ : [-b1,—a1] — [-d1,—c1]

and —¢ is a homeomorphism (Why?) we have the result. U

EXERCISE 6. —(y1+72) = (—=y1) + (—72).
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DEFINITION 4 (Arc-length). Lety : [a, b] — C be a curve. We define the arc-length

of the curve y to be

n
yl:=sup )_Iy(t)) =y(tj-1)l
j=0
where the supremum is over n and all partitionsa=ft< t; <--- < t,; = b.
We say that the curve vy is rectifiable if |y| is finite.

EXERCISE 7. [y1+7Y2|=y1l+lyal.

DEFINITION 5. A curve y : [a, b] — C is said to be continuously differentiable if for

each ty € (a, b),

1) — v (&
- tim YO
=1 t—1
tela,b]\fo}

exists and is continuous.
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LEMMA 8. Let g:[a,b] — C be continuous. Then

b
f gndte

b b b
Here,f g(t)dt::f %e(g(t))dt+if Jm(g(p)dt.
a a a

b
sf lg(n)ldt.

PROOEF. Fix0 € R,

b
sf e’eg(t)‘dt
a
b
=1 lg(nldt
a
Taking supremum, we get
b b
f gdt| < lg(t)ldt
a a
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THEOREM 9. Lety:[a, bl — C be a continuous differentiable curve. Theny is rectifi-

able and

b
lyl =f ly'(D)ldt.

b
The formula |y| = f Iy' (1)|dt is called the arc-length formula.
a

PROOE. Leta =ty < t; <--- < t, = b be a partition of [a, b]. Using the fundamental

theorem of calculus,

n

Y lrap—yi-nl=3
=0

j=0

n

Lj
f Y (ndt

lj-1

Hence taking supremum over partitions, we get

b
lyl Sf ly'(D)ldt.

From this, we get |y| is finite and hence a continuous differentiable curve is rectifiable.
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To prove the other inequality, consider the following set.

Given € > 0, let

ZJ

E.= {te [a,b] : |y [[a’t/]| zf Iy (0)ldt—e(t' —a), Vi < t}.
a

Claim: E. is closed.

Let t, € E. be a sequence converging to f). We want to show that

t/
ly [Wq|zf Iy (D dt|—e(f' —a),¥ i’ < to.
a

For, t’ < 1y, this is satisfied. Because ¢, is a sequence which converges to ;. So, if t' < f,
is fixed then there will be t,, for some m which will be greater than t'. Since ¢, € E, and
t' < t,, = ' satisfies the condition.
Now let’s check the condition for ¢’ = £y. If {t,},en is @ sequence converging to fy from
the right, again we are done by above argument.

Let us assume that {¢,} ,en is @ sequence converging from the left to ty. Then we have

following observation,

tn
1Y Naiol| = Y Tain] Zfa Iy (t)|dt—e(t, — a).

Hence 1y € E.
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Claim: E, is open.
Let £y € E.. We already know that [#) — 6, fy] < E¢ for 6 small enough.
Since y is continuously differentiable at £y, given € >0, 36 > 0 such that

Y@ —y(t)

€
— —v'(to) 55, whenever (¢ - tp) < 0.

Then,
€
1Y (t0) (£ — to) | — 1y () =y (£o)| < 5= 1o).
€
Iy (5) =y () = |y (1) (£ — o) — 5 (1= 10). = (%)
Since y’ is continuous, we can pick § > 0 small enough so that for 7 € (fy, t + 5),
t t € €
|y’(t)|dtsf (I ()1 + =) dr <1y ()¢ - 1) + = (1= 10). — (+%)
fo fo 2 2
Using (*) and (%),
£ €
Y (0ldt < Iy (1) —y(to)] 5 (0= 10).
To
Now,
t €
|Y r[l‘o,t]| = |y (1) =y (o) Ef ly'(0)ldt— E(t_ lo).
To

Since tj € E,

to €
¥ Nasl] zf ' (0ldi=> (1o~ a.
a
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Hence,
1Y Nan] zfatl}/'(t)ldt—e(t—a),VtE [a, o+ 6).
Then, E, is open and [a, b] is connected = E, = [a, b].
Hence Ve >0,
I szw’(mdr—e(b—a).
, a
Hence, |y zfa ly'(£)ldt.

b
Therefore |y| :f ly'(r)|dt.
a

EXERCISE 10.

® |‘Yzl—>Z2| = |Z2 - le-

e Lety(0) =29+ re'? for 0 € [0,27]. Then Iyl =2mr.



