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Curves in the Complex Plane

In the last few weeks we explore the notion of differentiability in great detail. Just

like in the real analysis setting, the notion of complex differentiability is also tied down

together with notion of integration. And among the notions of integration, we will be

most interested in integral along curves or rather line integrals. We will plunge into that

in the next few weeks but in this lecture let us review and recall the notion of curve and

the various properties of curves. Let us begin this lecture by recalling what are curves?

(Refer Slide Time: 00:59)

DEFINITION 1. A continuous parametrized curve is a continuous mapγ : [a,b] −→C.

If a = b, then the curve is trivial. The point γ(a) is called the initial point of γ and

γ(b) is called the terminal point.

γ is said to be a closed curve if γ(a) =γ(b). We say that γ is a simple curve if γ(t ) ̸=γ(t ′)

with the exception of t = a, t ′ = b.

The image γ([a,b]) of γ is called the image of the curve.
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EXAMPLE 1.

• Let z1, z2 ∈C,

γz1→z2 := (1− t )z1 + t z2, t ∈ [0,1].

If z1 = z2, then γz1→z2 is a closed curve but not simple.

• Define γ(θ) = z0 + r e iθ, θ ∈ [0,2π]. Then image of curve is a circle of radius r

centered z0. Here the initial and terminal points is z0 + r . Hence γ is a simple

closed curve.

Now consider γ1 and γ2 defined by

γ1(θ) = z0 + r e2πiθ, θ ∈ [0,1]

γ2(θ) = z0 + r e2iθ θ ∈ [0,2π].

Then γ1 is a simple closed curve having initial and terminal point z0 + r and

image of γ1 is same as that of γ, but still we treat them as different curves as

domain of γ and γ1 are different. In the case of γ2, it looks similar to γ, however

γ2 is not a simple closed curve as for any point in the image of γ2 we have two

preimages.

Now we would like to somehow identify γ and γ1, and the right notion to look at for this

purpose of curves is the continuous reparametrization.
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DEFINITION 2. We say that a curve γ2 : [a2,b2] −→ C is a continuous reparametriza-

tion of γ1 : [a1,b1] −→ C if ∃ a homeomorphism ϕ : [a1,b1] −→ [a2,b2] such that ϕ(a1) =
a2 and ϕ(b1) = b2 and such that γ2(ϕ(t )) = γ1(t ), ∀ t ∈ [a1,b1].

By the definition, reparametrized curves must have the same initial and terminal

point and also the image must be same. Hence γz2→z1 is not a reparametrization of

γz1→z2

EXERCISE 2. Continuous reparametrization is an equivalence relation.

DEFINITION 3. We say that a curve −γ is a reversal of a curve γ : [a,b] → C if −γ :

[−b,−a] →C and −γ(t ) = γ(−t )

(Refer Slide Time: 16:54)
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EXAMPLE 3. Let γz2→z1 be the straight line joining z2 to z1, then

γz2→z1 ≡−γz1→z2

where γz1→z2 is a straight line joining z1 to z2.

Now let us define the notion of concatenation.

(Refer Slide Time: 18:31)

Let γ1 : [a1,b1] −→C and γ2 : [a2,b2] −→C be two curves such that the terminal point

of γ1 coincides with the initial point of γ2. Let γ̃2 be a reparametrization of γ2 through

ϕ : [a2,b2] −→ [b1,b2 + (b1 −a2)]. That is, γ̃2 : [b1,b2 + (b1 −a2)] −→C given by

γ̃2(t ) = γ2(t − (b1 −a2)).

Define

γ1 +γ2 : [a1,b2 +b1 −a2] −→C
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by

(γ1 +γ2)(t ) :=

γ1(t ), a1 ≤ t ≤ b1

γ̃2(t ), b1 ≤ t ≤ b2 +b1 −a2.

(Refer Slide Time: 23:23)

EXERCISE 4.

• γ1 +γ2 is continuous.

• Let γ1,γ2,γ3 be three curves such that terminal point of γ1 is the initial point of

γ2 and terminal point of γ2 is the initial point of γ3. Then,

(γ1 +γ2)+γ3 = γ1 + (γ2 +γ3).

PROPOSITION 5. Let γ1,γ2, γ̃1, γ̃2 be curves such that terminal point of γ1 coincides

with the initial point of γ2. Let γ̃1 and γ̃2 be continuous reparametrization of γ1 and γ2

respectively. Then,

γ1 +γ2 ≡ γ̃1 + γ̃2

and

−γ1 =−γ̃1.

PROOF. Let γ1 : [a1,b1] −→ C and γ̃1 : [c1,d1] −→ C. Let ϕ1 : [a1,b1] −→ [c1,d1] be

the homeomorphism such that ϕ1(a1) = c1 and ϕ1(b1) = d1 and such that γ̃1(ϕ1(t )) =
γ1(t ), ∀ t ∈ [a1,b1]. Similarly, letγ2 : [a2,b2] −→C and γ̃2 : [c2,d2] −→C. Letϕ2 : [a2,b2] −→
[c2,d2] be homeomorphism.

(Refer Slide Time: 27:38)
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Now γ1 +γ2 : [a1,b2 +b1 −a2] −→C and γ̃1 + γ̃2 : [c1,d2 +d1 − c2] −→C.

Let us define ψ : [a1,b2 +b1 −a2] −→ [c1,d2 +d1 − c2] by

ψ(t ) :=

ϕ1(t ), a1 ≤ t ≤ b1

ϕ2(t −b1 +a2)+d1 − c2, b1 ≤ t ≤ b2 +b1 −a2.

Check that ψ is a homeomorphism. Hence γ1 +γ2 ≡ γ̃1 + γ̃2.

Now to prove other result,

−γ1 : [−b1,−a1] −→C and −γ̃1 : [−d1,−c1] −→C. Since −ϕ : [−b1,−a1] −→ [−d1,−c1]

and −ϕ is a homeomorphism (Why?) we have the result. □

EXERCISE 6. −(γ1 +γ2) ≡ (−γ1)+ (−γ2).

(Refer Slide Time: 33:08)
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DEFINITION 4 (Arc-length). Let γ : [a,b] −→ C be a curve. We define the arc-length

of the curve γ to be

|γ| := sup
n∑

j=0

|γ(t j )−γ(t j−1)|

where the supremum is over n and all partitions a = t0 < t1 < ·· · < tn = b.

We say that the curve γ is rectifiable if |γ| is finite.

EXERCISE 7. |γ1 +γ2| = |γ1|+ |γ2|.

DEFINITION 5. A curve γ : [a,b] −→ C is said to be continuously differentiable if for

each t0 ∈ (a,b),

γ′(t0) = lim
t→t0

t∈[a,b]\{t0}

γ(t )−γ(t0)

t − t0

exists and is continuous.

(Refer Slide Time: 37:35)
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LEMMA 8. Let g : [a,b] −→C be continuous. Then

∣∣∣∣∫ b

a
g (t )d t

∣∣∣∣≤ ∫ b

a
|g (t )|d t .

Here,
∫ b

a
g (t )d t :=

∫ b

a
Re(g (t ))d t + i

∫ b

a
Im(g (t ))d t .

PROOF. Fix θ ∈R,

∣∣∣∣Re

(
e iθ

∫ b

a
g (t )d t

)∣∣∣∣= ∣∣∣∣∫ b

a
Re

(
e iθg (t )

)
d t

∣∣∣∣
≤

∫ b

a

∣∣∣Re
(
e iθg (t )

)∣∣∣d t

≤
∫ b

a

∣∣∣e iθg (t )
∣∣∣d t

=
∫ b

a
|g (t )|d t .

Taking supremum, we get ∣∣∣∣∫ b

a
g (t )d t

∣∣∣∣≤ ∫ b

a
|g (t )|d t .

□

(Refer Slide Time: 41:43)
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THEOREM 9. Let γ : [a,b] −→C be a continuous differentiable curve. Then γ is rectifi-

able and

|γ| =
∫ b

a
|γ′(t )|d t .

The formula |γ| =
∫ b

a
|γ′(t )|d t is called the arc-length formula.

PROOF. Let a = t0 < t1 < ·· · < tn = b be a partition of [a,b]. Using the fundamental

theorem of calculus,

n∑
j=0

∣∣γ(t j )−γ(t j−1)
∣∣= n∑

j=0

∣∣∣∣∣
∫ t j

t j−1

γ′(t )d t

∣∣∣∣∣
≤

n∑
j=0

∫ t j

t j−1

∣∣γ′(t )
∣∣d t

=
∫ b

a
|γ′(t )|d t .

Hence taking supremum over partitions, we get

|γ| ≤
∫ b

a
|γ′(t )|d t .

From this, we get |γ| is finite and hence a continuous differentiable curve is rectifiable.

(Refer Slide Time: 45:39)
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To prove the other inequality, consider the following set.

Given ϵ> 0, let

Eϵ =
{

t ∈ [a,b] :
∣∣γ ↾[a,t ′]

∣∣≥ ∫ t ′

a
|γ′(t )|d t −ϵ(t ′−a),∀t ′ ≤ t

}
.

Claim: Eϵ is closed.

Let tn ∈ Eϵ be a sequence converging to t0. We want to show that∣∣γ ↾[a,t ′]
∣∣≥ ∫ t ′

a
|γ′(t )d t |−ϵ(t ′−a),∀ t ′ ≤ t0.

For, t ′ < t0, this is satisfied. Because tn is a sequence which converges to t0. So, if t ′ < t0

is fixed then there will be tm for some m which will be greater than t ′. Since tn ∈ Eϵ and

t ′ < tm =⇒ t ′ satisfies the condition.

Now let’s check the condition for t ′ = t0. If {tn}n∈N is a sequence converging to t0 from

the right, again we are done by above argument.

Let us assume that {tn}n∈N is a sequence converging from the left to t0. Then we have

following observation,∣∣γ ↾[a,t0]
∣∣≥ ∣∣γ ↾[a,tn ]

∣∣≥ ∫ tn

a
|γ′(t )|d t −ϵ(tn −a).

Hence t0 ∈ Eϵ.
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Claim: Eϵ is open.

Let t0 ∈ Eϵ. We already know that [t0 −δ, t0] ⊂ Eϵ for δ small enough.

Since γ is continuously differentiable at t0, given ϵ> 0, ∃δ> 0 such that∣∣∣∣γ(t )−γ(t ′)
t − t ′

−γ′(t0)

∣∣∣∣≤ ϵ

2
, whenever (t − t0) < δ.

Then,

|γ′(t0)(t − t0)|− |γ(t )−γ(t0)| ≤ ϵ

2
(t − t0).

|γ(t )−γ(t0)| ≥ |γ′(t0)|(t − t0)− ϵ

2
(t − t0). → (∗)

Since γ′ is continuous, we can pick δ> 0 small enough so that for t ∈ (t0, t +δ),∫ t

t0

|γ′(t )|d t ≤
∫ t

t0

(
|γ′(t0)|+ ϵ

2

)
d t ≤ |γ′(t0)|(t − t0)+ ϵ

2
(t − t0). → (∗∗)

Using (∗) and (∗∗), ∫ t

t0

|γ′(t )|d t ≤ |γ(t )−γ(t0)|+ ϵ

2
(t − t0).

Now, ∣∣γ ↾[t0,t ]
∣∣≥ |γ(t )−γ(t0)| ≥

∫ t

t0

|γ′(t )|d t − ϵ

2
(t − t0).

Since t0 ∈ Eϵ, ∣∣γ ↾[a,t0]
∣∣≥ ∫ t0

a
|γ′(t )|d t − ϵ

2
(t0 −a).
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Hence, ∣∣γ ↾[a,t ]
∣∣≥ ∫ t

a
|γ′(t )|d t −ϵ(t −a),∀ t ∈ [a, t0 +δ).

Then, Eϵ is open and [a,b] is connected =⇒ Eϵ = [a,b].

Hence ∀ϵ> 0,

|γ| ≥
∫ b

a
|γ′(t )|d t −ϵ(b −a).

Hence, |γ| ≥
∫ b

a
|γ′(t )|d t .

Therefore |γ| =
∫ b

a
|γ′(t )|d t . □

EXERCISE 10.

• ∣∣γz1→z2

∣∣= |z2 − z1|.
• Let γ(θ) = z0 + r e iθ for θ ∈ [0,2π]. Then |γ| = 2πr.


