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Problem Session

In this problem session, we will address some problems on the Cauchy- Riemann equa-

tions and its implications. Recall that given Q < C a domain and f : Q — C which is

differentiable. Then the Wirtinger derivatives were defined as
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PROBLEM 1. Let f be a polynomial given by

f@= ) come'?"

n,m=0
n+m<d

Show that
f n—-1\=m
5,@= Y cam(nz"Hz
n,m=0
n+m<d
and

g(z) Z Cn,mzn(mzm_l)-

n,m=0
n+m<d
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SOoLUTION 1. Before going to the solution of the problem, we first observe some of

the properties satisfied by the Wirtinger derivatives.
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Wirtinger derivatives satisfies the product rule also:
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Similarly
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Now observe that
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Hence by applying product rule, we have e 0.
We also know that
azn n-1
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Let f(z) = Z cnmz"z™.
n,m=0
n+m<d
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n+m<d

Z cn,m(nz”_l)zm.

n,m=0
n+m<d
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In order to prove the second expression, observe that — = 0 and hence — = 0. Also
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.Now it is an easy exercise for the reader to complete the solution.

Before we do the next problem, let us also look at the Laplacian operator in terms of

the Wirtinger derivatives.

Recall that the Laplacian operator was given by
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Now by the definition of Wirtinger derivatives, we have
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Hence
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Hence
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From the previous problem we can see that a polynomial f(z) = Z cnmz"z2"™ is holo-
,m=0

nn+rr?1§d
morphic if and only if ¢, ,,, = 0 whenever m > 0. Just like how we can give a characteri-
zation of what holomorphic polynomials will look like, we will also be able to talk about
how harmonic polynomials will be look like.
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PROBLEM 2. Let f be the polynomial

f@= Y come'?"

n,m=0
n+m<d
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Then the polynomial f is harmonic on C if and only if ¢, ;; = 0 whenever both n, m are

positive.
SOLUTION 2.
A= Y. comA(2"2™).
n,m=0
n+m<d
Now,
A(z”)—4M—4i(azn)—o
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By the properties of Wirtinger derivatives we saw,
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Therefore,
Af@)= Y. Comdm—-1)(n-1z""'z""

n,m=0
n+ms<d

Hence Af(z) =0ifand onlyifc,,;, =0V n,m>0.

PROBLEM 3. Let f : C — C be an entire function. Then f is real valued only if f is

constant.

SOLUTION 3. Let f = u+iv bereal valued = v =0.
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Then,
. *ou You .
u(x+ly)—u(0)+f —(t)dt+f a—(x+lt)dt
ov .
—u(0)+f —(t)dt f—(x+zt)dt
= u(0).

Hence u(z) = u(0).



