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Harmonic Functions

In the last week we explore the Cauchy–Riemann equations where the right set of con-

ditions which ensured that a differentiable function also turned out to be complex dif-

ferentiable. Given a holomorphic function, the Cauchy–Riemann equations tied the real

part of the holomorphic function with imaginary part of the holomorphic function. We

begin this week by observing that the Cauchy–Riemann equations imparts an extra set

of condition on these functions, real part and the imaginary part of a given holomorphic

function which is captured by the more common harmonic functions.

(Refer Slide Time: 00:59)

In this lecture we will always assume that our holomorphic functions are twice con-

tinuously differentiable. So I would like to note that this is a redundant condition. It is
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redundant because holomorphic functions will always satisfy this criteria. We will prove

that later. But since we have not proved it yet let me just put this extra condition.

Let f : U → C be a holomorphic function. The Cauchy- Riemann equation tells us

that if f = u + i v , then

∂u

∂x
(z) = ∂v

∂y
(z)

∂u

∂y
(z) =−∂v

∂x
(z)

→ (∗)

From (∗), we get

∂2u

∂x2
(z) = ∂2v

∂x∂y
(z)

∂2u

∂y2
(z) =− ∂2v

∂y∂x
(z).

(Refer Slide Time: 04:20)

By Clairaut’s theorem,

∂2v

∂x∂y
= ∂2v

∂y∂x
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and hence we get,

∂2u

∂x2
+ ∂2u

∂y2
= 0.

Similarly,

∂2v

∂x2
+ ∂2v

∂y2
= 0.

Let ∆ := ∂2

∂x2
+ ∂2

∂y2
. Then ∆ is called the Laplacian operator.

∆u =∆v = 0 =⇒ ∆ f = 0.

DEFINITION 1. Let u :Ω→R be a twice continuously differentiable function. We say

u is harmonic if ∆u = 0.

EXAMPLE 1.

• Given any holomorphic function f . Consider Re( f ) and Im( f ), both will be

harmonic functions.

• Consider f (z) = z̄. Then f is a harmonic function which is not holomorphic.

• Let u(z) = x2 − y2, which then will be harmonic.

Recall that, given Ω ⊂ X , where X is a metric space, the boundary of Ω, ∂Ω is given

by ∂Ω=Ω∩X \Ω.

EXAMPLE 2. ∂B(x0,r ) = {x ∈ X : d(x, x0) = r }.

(Refer Slide Time: 12:56)
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THEOREM 3 (Maximum Principle for Harmonic Functions). Let Ω be an open con-

nected subset of C and u :Ω→R be a twice differentiable harmonic function. Let K ⊂Ω
be a compact subset of Ω. Then,

sup
z∈K

u(z) = sup
z∈∂K

u(z)

and

inf
z∈K

u(z) = inf
z∈∂K

u(z)

PROOF. We shall prove that

sup
z∈K

u(z) = sup
z∈∂K

u(z).

(By considering −u which is also a harmonic function, the second statement follows.)

We already have

sup
z∈∂K

u(z) ≤ sup
z∈K

u(z).

(Refer Slide Time: 18:18)
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Assume that

sup
z∈∂K

u(z) < sup
z∈K

u(z).

Let z0 be a point in K such that u(z0) = sup
z∈K

u(z).

Since z0 attains the maximum, we have
∂2u

∂x2
(z0) ≤ 0 and

∂2u

∂y2
(z0) ≤ 0. Let δ= sup

z∈K
u(z)−

sup
z∈∂K

u(z).

Consider the function x2 + y2, then this is bounded above in K by a constant M , as K is

compact.

Define uϵ = u(z)+ϵ(x2 + y2), where ϵ< δ

2M
.

(Refer Slide Time: 22:10)
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Now it is left as an exercise to reader to check that sup
z∈∂K

uϵ(z) < sup
z∈K

uϵ(z).

Let zϵ be a point in K where uϵ attains its maximum.

Hence

∂2uϵ
∂x2

(zϵ) ≤ 0

∂2uϵ
∂y2

(zϵ) ≤ 0

→ (∗∗)

But we know that,

∂2uϵ
∂x2

+ ∂2uϵ
∂y2

= ∂2u

∂x2
+2ϵ+ ∂2u

∂y2
+2ϵ

(Refer Slide Time: 24:38)

And the Laplacian of uϵ,

∆uϵ(zϵ) =∆u(zϵ)+4ϵ =⇒ ∆uϵ(zϵ) > 0

which is a contradiction to (∗∗).

Hence

sup
z∈K

u(z) = sup
z∈∂K

u(z).

□
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THEOREM 4 (Maximum Principle for Holomorphic Functions ). Let U ⊆ C be open

and connected and let f : U →C be a holomorphic function. Then for K ⊂U compact, we

have

sup
z∈K

| f (z)| = sup
z∈∂K

| f (z)|.

PROOF. Let z ∈C, then

|z| = sup
θ∈R

Re(ze iθ)

sup
z∈K

| f (z)| = sup
z∈K

sup
θ∈R

Re
(

f (z)e iθ
)

= sup
θ∈R

sup
z∈K

Re
(

f (z)e iθ
)

.

Define fθ(z) = e iθ f (z). Then fθ is holomorphic. Hence Re( fθ) is harmonic.

(Refer Slide Time: 30:51)

By the maximum principle for harmonic functions, we have

sup
z∈K

Re
(
e iθ f (z)

)
= sup

z∈∂K
Re

(
e iθ f (z)

)
.

Hence, we then have

sup
z∈K

| f (z)| = sup
θ∈R

sup
z∈∂K

Re
(
e iθ f (z)

)
= sup

z∈∂K
sup
θ∈R

Re
(
e iθ f (z)

)
= sup

z∈∂K
| f (z)|.

□
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DEFINITION 2 (Harmonic Conjugate). Let u : Ω ⊆ C→ R be a twice differentiable

harmonic function. We say that v :Ω→ R is a harmonic conjugate of u if f := u + i v is

holomorphic.

(Refer Slide Time: 34:34)

PROPOSITION 5. Let u : C→ R be a harmonic function. Then there exists a harmonic

function v : C→ R such that v is a harmonic conjugate of u. Moreover v is determined

uniquely up to addition by constants.

PROOF. First we may assume the existence of such a harmonic conjugate and prove

the uniqueness. That is, we will prove if there exists two harmonic conjugates, v1 and

v2, then v1 − v2 is a constant.

Let v1 be a harmonic conjugate. By using fundamental theorem of calculus, we have

v1(x + i y) = v1(0)+
∫ x

0

∂v1

∂x
(t )d t +

∫ y

0

∂v1

∂y
(x + i t )d t

= v1(0)−
∫ x

0

∂u

∂y
(t )d t +

∫ y

0

∂u

∂x
(x + i t )d t .

Similarly, if v2 is any other harmonic conjugate of u, then

v2(x + i y) = v2(0)−
∫ x

0

∂u

∂y
(t )d t +

∫ y

0

∂u

∂x
(x + i t )d t .

(Refer Slide Time: 40:01)
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Hence,

v1(x + i y)− v2(x + i y) = v1(0)− v2(0) = c ∈C.

Now let us prove the existence part of the proposition.

Define

v(x + i y) =−
∫ x

0

∂u

∂y
(t )d t +

∫ y

0

∂u

∂x
(x + i t )d t .

Then
∂v

∂y
(x + i t ) = ∂u

∂x
(x + i t )

which is one of the expressions in the Cauchy-Riemann equations.

(Refer Slide Time: 43:53)
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∂v

∂x
(x + i y) =−∂u

∂y
(x)+ ∂

∂x

(∫ y

0

∂u

∂x
(x + i t )d t

)
=−∂u

∂y
(x)+

∫ y

0

∂2u

∂x2
(x + i t )d t .

Since u is harmonic, we have∫ y

0

∂2u

∂x2
(x + i t )d t =−

∫ y

0

∂2u

∂y2
(x + i t )d t

=−
(
∂u

∂y
(x + i y)− ∂u

∂y
(x)

)
.

∂v

∂x
(x + i y) =−∂u

∂y
(x)− ∂u

∂y
(x + i y)+ ∂u

∂y
(x) =−∂u

∂y
(x + i y).

Hence u, v satisfy the Cauchy- Riemann equations and therefore f = u + i v is holomor-

phic. □


