Complex Analysis
Prof. Pranav Haridas
Kerala School of Mathematics
Module No - 3
Lecture No-13

Harmonic Functions

In the last week we explore the Cauchy—Riemann equations where the right set of con-
ditions which ensured that a differentiable function also turned out to be complex dif-
ferentiable. Given a holomorphic function, the Cauchy-Riemann equations tied the real
part of the holomorphic function with imaginary part of the holomorphic function. We
begin this week by observing that the Cauchy-Riemann equations imparts an extra set
of condition on these functions, real part and the imaginary part of a given holomorphic
function which is captured by the more common harmonic functions.
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In this lecture we will always assume that our holomorphic functions are twice con-

tinuously differentiable. So I would like to note that this is a redundant condition. It is
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redundant because holomorphic functions will always satisfy this criteria. We will prove
that later. But since we have not proved it yet let me just put this extra condition.
Let f: U — C be a holomorphic function. The Cauchy- Riemann equation tells us

thatif f = u+iv, then

a—u(Z) = @(Z)
ox 0y

— (%)
a—u(Z)——@(Z)
ay ~ ox
From (x), we get

aZu(Z)_ v .
ax2""  0xdy
L
0y oyox
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By Clairaut’s theorem,

0x0y - 0y0x



and hence we get,

’u .\ u
0x2  8y?
Similarly,
0%v .\ 0*v 0
ox?  8y?
0 02
Let A := — + —. Then A is called the Laplacian operator.
0x?  0y?

Au=Av=0 = Af=0.

DEFINITION 1. Let u:Q — R be a twice continuously differentiable function. We say

u is harmonic if Au =0.

EXAMPLE 1.

e Given any holomorphic function f. Consider Pie(f) and IJm(f), both will be
harmonic functions.
e Consider f(z) = z. Then f is a harmonic function which is not holomorphic.

o Let u(z) = x%— yz, which then will be harmonic.

Recall that, given Q c X, where X is a metric space, the boundary of Q, 0Q is given
bydQ=QnX\Q.

EXAMPLE 2. 0B(xg,1) ={x€ X :d(x,xg) = r}.
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THEOREM 3 (Maximum Principle for Harmonic Functions). Let Q be an open con-
nected subset of C and u:Q — R be a twice differentiable harmonic function. Let K < Q

be a compact subset of Q. Then,

sup u(z) = sup u(z)
zeK z€0K

and
inf u(z) = inf u(z)
zeK z€e0K
PROOE. We shall prove that

sup u(z) = sup u(z).
zeK ze0K

(By considering —u which is also a harmonic function, the second statement follows.)

We already have

sup u(z) < sup u(z).
ze0K zeK
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Assume that

sup u(z) < sup u(z).

z€0K zeK

Let zg be a point in K such that u(zy) = sup u(z).
zeK
2u 2u
Since z attains the maximum, we have —; (zp) <0 and —;(2p) < 0. Let 6 =supu(z) —
0x? 0y? 2eK

sup u(z).
z€0K

Consider the function x? + yz, then this is bounded above in K by a constant M, as K is
compact.

0
Define u, = u(z) +e(x? + y%), where € < TV
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Now it is left as an exercise to reader to check that sup u.(z) < sup ue(z).
ze0K zeK
Let z, be a point in K where u, attains its maximum.

Hence
0% u,
W(Ze) <0 )
0% u,
ayz (z¢) =0
But we know that,
0 ue + Fue _Ou +2€+ O +2€
ax2  dy?  ox? dy?
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And the Laplacian of u,
Auc(ze) = Au(ze) +4e = Aue(z:) >0

which is a contradiction to (*).

Hence

sup u(z) = sup u(z).
zeK ze0K
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THEOREM 4 (Maximum Principle for Holomorphic Functions ). Let U < C be open
and connected and let f : U — C be a holomorphic function. Then for K c U compact, we

have

sup|f(z)| = sup | f(2)I.
zeK ze0K

PROOE. Let z€ C, then
|z| = supi)‘{e(zeig)

OeR

sup|f(z)| = supsup?iRe (f(z)eie)
zeK zeK OeR

= supsupRe (f(z)eie) .
O0eR zeK

Define fj(z) = '’ f(z). Then f is holomorphic. Hence 9ie(fj) is harmonic.
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By the maximum principle for harmonic functions, we have
supRe (eigf(z)) = sup Re (eigf(z)) .
zeK ze0K

Hence, we then have

sup|f(z)| = sup sup Re (eief(z))
zeK OeR zedK

= sup sup‘Re (eief(z))
zeO0K OeR

= sup | f(2)].
ze0K



DEFINITION 2 (Harmonic Conjugate). Let u: Q < C — R be a twice differentiable
harmonic function. We say that v : Q — R is a harmonic conjugate of u if f := u+iv is

holomorphic.
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PROPOSITION 5. Let u: C — R be a harmonic function. Then there exists a harmonic
function v : C — R such that v is a harmonic conjugate of u. Moreover v is determined

uniquely up to addition by constants.

PROOE. First we may assume the existence of such a harmonic conjugate and prove
the uniqueness. That is, we will prove if there exists two harmonic conjugates, v; and
v, then v; — v, is a constant.

Let v be a harmonic conjugate. By using fundamental theorem of calculus, we have

X

nx+iy) = v1(0)+f

y
%(t)dm-f O (e rind
0 ox 0 ay
*0 Vo
= v1(0)—f —u(t)dt+f Lx+indt.
o 0y 0o O0x
Similarly, if v, is any other harmonic conjugate of u, then

. *ou You .
Va(x+iy) = vg(O)—f —(t)dt+f —(x+it)dt.
o 0y 0o 0x
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Hence,

N(x+iy)—ve(x+iy)=v1(0)—-v2(0)=ceC.

Now let us prove the existence part of the proposition.

Define
V(X + i )——fxa—u(t)dmfya—”(xnt)dt
Y= 0 ay 0 0x '

Then

a—v(x+it)—a—u(x+it)
dy © 0x

which is one of the expressions in the Cauchy-Riemann equations.
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i
f —u(x+it)dt)
0 0x

au( ) + yaZu( +it)dt
=——(x —(x+1i .
oy 0 0x?

Since u is harmonic, we have
Y é%u _ Y 6%u _
; W(x+lt)dt=—f0 O_le(x+lt)dt

ou

oy

(x+1 )—a—u(x)
y ay M

@(x+i )——a—u(x)—a—u(x+i )+6—u(x)——a—u(x+i )
0x = dy dy ¥ dy ~ dy ¥

Hence u, v satisfy the Cauchy- Riemann equations and therefore f = u+ iv is holomor-

phic. U



