Complex Analysis

Prof. Pranav Haridas

Kerala School of Mathematics

Lecture No - 3.3

Problem Session

PROBLEM 1. Let $T: \mathbb{C} \to \mathbb{C}$ be an isometry of the complex plane. Then show that T is given by either

$$T(z) = z_0 + wz$$
 for $z \in \mathbb{C}$

or

$$T(z) = z_0 + w\bar{z}$$
 for $z \in \mathbb{C}$

where $z_0 \in \mathbb{C}$ is fixed and $w \in S^1$.

SOLUTION 1. Let $z_0 = T(0)$. Define $T_{-z_0} := z - z_0$. Now it is left to reader to verify that T_{-z_0} is an isometry. Then $T_{-z_0}T(0)=T_{-z_0}(z_0)=z_0-z_0=0$. Hence $T_{-z_0}T$ is an isometry fixing origin.

Then by the theorem proved earlier, we have either

$$T_{-z_0}T(z)=wz$$
 for $z\in\mathbb{C}$, (where $w\in S^1$)

or

$$T_{-z_0}T(z)=w\bar{z}$$
 for $z\in\mathbb{C}$, (where $w\in S^1$).

Define $T_{z_0}(z)=z+z_0$. Then observe that T_{z_0} is also an isometry. Moreover $T_{z_0}T_{-z_0}(z)=T_{z_0}(z-z_0)=z=id(z) \Longrightarrow T_{z_0}T_{-z_0}=id$.

(Refer Slide Time: 05:53)

Hence, either

$$T_{z_0}(T_{-z_0}T)(z) = T_{z_0}(wz) = z_0 + wz$$

or

$$T_{z_0}(T_{-z_0}T)(z) = T_{z_0}(w\bar{z}) = z_0 + w\bar{z}.$$

We know that function composition is associative, hence $T_{z_0}(T_{-z_0}T) = (T_{z_0}T_{-z_0})T = idT = T$.

Hence for $z \in \mathbb{C}$ either

$$T(z) = z_0 + wz$$

$$T(z) = z_0 + w\bar{z}.$$

PROBLEM 2. Let n be a positive integer. Show that the complex number solutions to the equation $z^n=1$ are given by $z_k=e^{\frac{2\pi ik}{n}}$ for $k=0,1,\ldots,n-1$. These roots are called the n^{th} roots of unity.

(Refer Slide Time: 10:10)

SOLUTION 2. Consider $z^n=1$. Then $|z^n|=1 \implies |z|^n=1$. Since $|z|\geq 0$, we have |z|=1. Hence $z\in S^1 \implies z=e^{2\pi i\theta}$ for some $\theta\in [0,1)$.

$$z^{n} = 1 \implies e^{2\pi i (n\theta)} = 1$$

$$\implies 2\pi (n\theta) = 2\pi k, \text{ where } k \in \mathbb{Z}$$

$$\implies \theta = \frac{k}{n}, \text{ where } k \in \mathbb{Z}.$$

Notice that if ℓ_1 and ℓ_2 are such that

$$e^{2\pi i \frac{\ell_1}{n}} = e^{2\pi i \frac{\ell_2}{n}} \implies e^{2\pi i \frac{(\ell_1 - \ell_2)}{n}} = 1 \implies \frac{\ell_1 - \ell_2}{n} \in \mathbb{Z}.$$

Thus if $\ell_1 = \ell_2 + kn$, then $e^{2\pi i \frac{\ell_1}{n}} = e^{2\pi i \frac{\ell_2}{n}}$.

Hence every complex number z such that $z^n=1$ is given by $e^{\frac{2\pi i k}{n}}$ where $k=0,1,\ldots n-1$. (Any other integer ℓ can be written as $\ell=dn+k$.)

(Refer Slide Time: 16:44)

Now it is left for reader to check that $e^{\frac{2\pi i k_1}{n}} \neq e^{\frac{2\pi i k_2}{n}}$ for $0 < k_1 < k_2 < n$.

Hence we have concluded that $z^n = 1$ has n distinct roots given by $e^{\frac{2\pi i k}{n}}$ where k = 0, 1, ..., n-1 and are called the nth roots of unity.

PROBLEM 3. Show that if w is a non-zero complex number and n a positive integer, then there exists n distinct roots of the equation $z^n = w$. Any two roots differ by multiplication by a root of unity.

SOLUTION 3. Consider $z^n=w$. In polar coordinates, let $w=re^{i2\pi\theta}$. Then $|z|^n=|w|=r\Longrightarrow |z|=r^{1/n}$. If $z=r^{1/n}e^{i2\pi\phi}$

$$z^{n} = w$$

$$\Longrightarrow \left(r^{1/n}e^{i2\pi\varphi}\right)^{n} = re^{i2\pi\theta}$$

$$\Longrightarrow e^{i2\pi(n\varphi-\theta)} = 1$$

$$\implies n\varphi - \theta = k \in \mathbb{Z}$$

$$\implies \varphi = \frac{k + \theta}{n} \text{ where } k \in \mathbb{Z}.$$

(Refer Slide Time: 22:10)

Hence $z=r^{1/n}e^{\frac{i2\pi(\theta+k)}{n}}$ where $k\in\mathbb{Z}\Longrightarrow z=r^{1/n}e^{\frac{i2\pi\theta}{n}}\cdot e^{\frac{i2\pi k}{n}}$ where $k=0,1,\ldots n-1$. Check that product of two n^{th} roots of unity is again an n^{th} root of unity and the inverse of an n^{th} root of unity is again an n^{th} root of unity.

PROBLEM 4. Let w_1, w_2 be distinct complex numbers, and let λ be a positive real number.

- (i) Show that the set $\left\{z: \frac{|z-w_1|}{|z-w_2|} = \lambda\right\}$ gives a circle when $\lambda \neq 1$ and a straight line when $\lambda = 1$.
- (ii) Conversely, show that every circle and straight line can be written in this manner.

SOLUTION 4. Consider
$$\frac{|z-w_1|}{|z-w_2|} = \lambda$$
. Then,
$$|z-w_1|^2 = \lambda^2 |z-w_2|^2$$

$$|z|^2 - z\bar{w}_1 - \bar{z}w_1 + |w_1|^2 = \lambda^2 (|z|^2 - z\bar{w}_2 - \bar{z}w_2 + |w_2|^2)$$

If
$$\lambda = 1$$
,

$$z(\bar{w}_2 - \bar{w}_1) + \bar{z}(\bar{w}_2 - \bar{w}_1) = |w_2|^2 - |w_1|^2$$

$$\bar{\alpha}z + \alpha\bar{z} = c, \text{ where } c \in \mathbb{R}$$

which is a line.

When $\lambda \neq 1$,

$$(1 - \lambda^2)|z|^2 - z(\bar{w}_1 - \lambda^2 \bar{w}_2) - \bar{z}(w_1 - \lambda^2 w_2) = \lambda^2 |w_2|^2 - |w_1|^2$$
$$|z|^2 - \bar{\alpha}z - \alpha \bar{z} + |\alpha|^2 = \frac{\lambda^2 |w_2|^2 - |w_1|^2}{(1 - \lambda^2)} + |\alpha|^2$$
$$|z - \alpha|^2 = r^2, \text{ where } r \in \mathbb{R}$$

which is a circle.

(Refer Slide Time: 31:59)

Converse part is left as an exercise to reader.

<u>Definition</u>: Let $a_1, a_2, ..., a_n \in \mathbb{C}$. The convex hull of $a_1, a_2, ..., a_n$ is given by the set $\{\sum \lambda_i a_i : \lambda_i \in \mathbb{R}, \lambda_i \geq 0 \text{ and } \sum \lambda_i = 1\}$.

PROBLEM 5. Let P(z) be a polynomial given by $P(z) = c(z-z_1)(z-z_2)\cdots(z-z_n)$ where $z_1, z_2, \ldots z_n \in \mathbb{C}$ (not necessarily distinct). Then the roots of P'(z) lies in the convex hull of $z_1, z_2, \ldots z_n$.

SOLUTION 5. By product rule, $P'(z) = \sum_{j=1}^{n} c(z-z_1) \cdots \widehat{(z-z_j)} \cdots (z-z_n)$, here the hat indicates absence of the particular term.

(Refer Slide Time: 36:59)

At the points away from the roots of *P*, we have,

$$\frac{P'(z)}{P(z)} = \sum_{j=1}^{n} \frac{c(z-z_1)\cdots\widehat{(z-z_j)}\cdots(z-z_n)}{c(z-z_1)(z-z_2)\cdots(z-z_n)} = \sum_{j=1}^{n} \frac{1}{(z-z_j)}. \to (*)$$

Let w be a root of P'(z) such that $P(w) \neq 0$. Then by (*), we have

$$\sum_{j=1}^{n} \frac{1}{w - z_j} = 0$$

$$\Rightarrow \sum_{j=1}^{n} \frac{\bar{w} - \bar{z}_j}{|w - z_j|^2} = 0$$

$$\Rightarrow \bar{w} \sum \frac{1}{|w - z_j|^2} = \sum \frac{\bar{z}_j}{|w - z_j|^2}$$

$$w = \sum \frac{\frac{1}{|w-z_j|^2}}{\left(\sum \frac{1}{|w-z_j|^2}\right)} z_j.$$

Put
$$\frac{\frac{1}{|w-z_j|^2}}{\left(\sum \frac{1}{|w-z_j|^2}\right)} = \lambda_j$$
, then $\sum \lambda_j = 1$ and hence $w = \sum \lambda_j z_j$.