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Field of Complex Numbers 

 

Welcome to this course on complex analysis. This is a first course on complex analysis. The 

prerequisites that will be needed for this course would be sound understanding of basic linear 

algebra and basic real analysis. If you have seen some abstract algebra that will certainly help, 

but other than the first lecture the rest of the cause will not use much material or much 

knowledge from abstract algebra. 
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Regarding the textbook, so let me note down a few books. I should warn that we do not have a 

prescribed textbook for this course; however, most of the material that will be covered in this 

course can be found in almost all the classical books written in complex analysis. However, I 

would like to refer the following books for this course. The first one being Complex Analysis 

by Stein and Shakarchi. 

 

The second is titled “Functions of One Complex Variable”. There are 2 parts in this book, so 

the material that we will cover in this course will be found in the first part and it is by John B. 

Conway. Of course, there are many, many, many beautiful books written on this subject, maybe 

I should give a few other references. 
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There is this age old classic it is called “Complex Analysis” by Lars Ahlfors. There is also 

“Complex Analysis” by Theodore Gamelin. There is also this fantastic book “Real and 

Complex Analysis” with a slightly different approach by Walter Rudin. Of course, there are 

many more books, let me not write down all of them, but I would also suggest that you refer to 

these other references maybe a second or a third reading. Okay that is about textbooks.  

 

There will be weekly assignments in this course and you are really strongly encouraged to work 

on these problems on your own, you should spend some time sitting and thinking about these 

problems that will give you much better clarity on the subject material that will be covered. 

More or less everything introduced the course to you, so let us now begin the study of the 

subject. In a course in real analysis you would have started by studying rational numbers. 

 

You would have seen that rational numbers have certain deficiencies. For example if you look 

at some Cauchy sequences in rational numbers they do not converge and real numbers were 

constructed precisely to address this particular problem. Real numbers are the complete field 

which contain the rational numbers and it is unique up to some field isomorphisms. 

 

You would have developed and studied an entire rich and beautiful theory of real analysis on 

this field of real numbers, but then from an algebraic point of view, real numbers also have 

certain drawbacks. So there are polynomials, for example, which do not have roots in the real 

numbers. For example,   𝑥2 + 1  is a polynomial which does not have a root in the field of real 

numbers. Complex numbers was historically constructed in order to address this particular 

problem. So let us start this course by recalling what a field is. 
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So, a field F is a set with 2 operations. Let us call these operations addition which are denote 

by (+) and multiplication which is being denoted by (×), which satisfy the following properties.  
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First one is commutativity. If you take 2 elements 𝑥, 𝑦 𝜖 F, 𝑥 +  𝑦 =  𝑦 +  𝑥. The order in 

which we take the sum does not matter and 𝑥 ×  𝑦 =  𝑦 ×  𝑥, the order in which you multiply 

also does not matter. Second one is associativity. For 𝑥, 𝑦, 𝑧 𝜖 F,(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧). 

Similarly,(𝑥 × 𝑦) × 𝑧 = 𝑥 × (𝑦 × 𝑧). Associativity is a property which holds for both addition 

and multiplication. 
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The third property is existence of additive and multiplicative identities. There exists an element 

0 𝜖 F such that 𝑥 +  0 =  𝑥 for all 𝑥 𝜖 F. This is the additive identity in F. There exists an 

element 1𝜖 F such that 𝑥 ×  1 =  𝑥 for all 𝑥 𝜖 F. So basically, there are two special elements 

in the field F.  

Fourth property is distributivity. The addition and the multiplication operations, they interact 

with each other. For 𝑥, 𝑦, 𝑧 𝜖 F, 𝑥 × (𝑦 +  𝑧) =  𝑥 × 𝑦 +  𝑥 × 𝑧. 
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Finally, existence of inverses. For 𝑥 𝜖 F, there exists 𝑦 𝜖 F such that 𝑥 +  𝑦 gives you the 

additive identity 0 and for 𝑥 𝜖 F\{0}, there exists 𝑧 𝜖 F such that 𝑥 × 𝑧 = 1. The multiplicative 

inverse exists only for nonzero elements in the field F. This is the set of all properties which 

needs to be satisfied by the two operations for our given set to be a field. So that is the definition 

of a field and we are familiar with the field of real numbers.  
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The set ℝ is a field with the usual addition and multiplication operation. However, the algebraic 

structure of  ℝ has certain drawbacks. For example, all polynomials need not have roots in the 

field of real numbers. 

(Refer Slide Time: 11:03) 

 

For every 𝑥 𝜖 ℝ, 𝑥2 ≥ 0 and hence the polynomial 𝑥2 + 1 does not have root in ℝ. Field of 

complex numbers is constructed to address this drawback. Let me just start with definition for 

a field of complex numbers. 
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Definition: A field of complex numbers ℂ is a field which contains ℝ as subfield and a root 𝑖 

to the polynomial 𝑥2 +  1. Furthermore, the field of complex numbers is the smallest such field 

which contains ℝ and 𝑖.  

 

Rephrasing it, there does not exist a proper subfield of ℂ containing ℝ and 𝑖. When put 

differently, this says that ℂ is generated by ℝ and 𝑖 or if you have ℂ′, a subfield of ℂ which 

contains ℝ and 𝑖, then ℂ′ would necessarily be equal to ℂ.  
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This definition poses the following questions. The first one being does there exist such a field 

of complex numbers and the second one is can we say anything about the uniqueness.  
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In order to address the existence of such a field of complex numbers, we will be using some 

notions from abstract algebra, more precisely from ring theory. If you have not seen a course 

on abstract algebra, there is no problem, you may skip the remaining part of the lectures.  

 

You can assume the existence and the uniqueness of such a field of complex numbers, move 

over to the next lecture. From the next lecture onwards, there will be more focus on the analysis 

on such a field of complex numbers, you will not be needing too much of background in 

abstract algebra. However, in this lecture, we will be assuming some amount of knowledge in 

ring theory.  

 

Let ℝ[𝑥] be the collection of all formal polynomials over ℝ, the field of real numbers. A formal 

polynomial is an expression of the type 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑑𝑥𝑑, where 𝑎𝑖 are real numbers and 

𝑑 is a non-negative integer. 

 

We will be familiar with the addition of polynomials, multiplication of polynomials. Let me 

not give all those things as definitions again.  
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Let me just note that with the usual addition and multiplication of polynomials, ℝ[𝑥] is 

commutative ring with identity. So if you have not seen abstract algebra before, a commutative 

ring is set with two operations with almost all these properties satisfied except the existence of 

multiplicative inverse.  

 

What are the identities here? The zero polynomial is the additive identity and the constant 

polynomial 1 will be the multiplicative identity. The first thing to note is that ℝ[𝑥] is a 

commutative ring which is not a field, not all elements can be inverted. 

(Refer Slide Time: 19:54) 

 

In fact any non-constant polynomial is not a unit. There does not exist a multiplicative inverse 

for any non-constant polynomial in ℝ[𝑥]. Why is that the case? Because we have a notion of 

the degree of a polynomial, 𝑑 and if you look at the product of two polynomials, the degree 



adds up. If you want an inverse for a polynomial 𝑝(𝑥), there should exist a 𝑞(𝑥) such that 

𝑝(𝑥)𝑞(𝑥) = 1. 

 

The constant polynomial 1 has degree 0. However if 𝑝(𝑥) has degree greater than 0, then degree 

of 𝑝(𝑥)𝑞(𝑥) will always be greater than or equal to 1 and hence it cannot ever be a constant 

polynomial.  

Since the degree of the product of two polynomials is equal to the sum of the degree of the 

polynomials and the degree is always a non-negative number. Therefore non-constant 

polynomial can never have an inverse.  
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Let us take the polynomial 𝑥2 + 1. Since 𝑥2 + 1  is a non-constant polynomial, it is not 

invertible, the ideal generated by 𝑥2 + 1,   ⟨𝑥2 + 1⟩ will not be the entire ring. 

If 𝑎 is an element in the ideal, for any element 𝑏 in the ring, 𝑎𝑏 will be in the ideal and the 

ideals are the right objects with which we take quotients in a ring. 
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Let us define ℂ :=  ℝ[𝑥]/⟨𝑥2 + 1⟩ . 

 The objects here will be cosets of the ideal ⟨𝑥2 + 1⟩. The operation in C are given by; 

for the cosets 𝑝(𝑥) +⟨𝑥2 + 1⟩ 𝝐 ℂ and 𝑞(𝑥) +⟨𝑥2 + 1⟩ 𝜖 ℂ, 𝑝(𝑥) +⟨𝑥2 + 1⟩ = 𝑞(𝑥) +

⟨𝑥2 + 1⟩  if  𝑝(𝑥) − 𝑞(𝑥) 𝜖 ⟨𝑥2 + 1⟩  if and only if 𝑥2 + 1  being a factor of 𝑝(𝑥) –  𝑞(𝑥). This 

is the equivalence relation of the cosets involved. 
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The sum of two elements in ℂ is defined by, for 𝑝(𝑥) +⟨𝑥2 + 1⟩ , 𝑞(𝑥) +⟨𝑥2 + 1⟩ 𝜖 ℂ,   

𝑝(𝑥) +⟨𝑥2 + 1⟩ + 𝑞(𝑥) +⟨𝑥2 + 1⟩ = (𝑝(𝑥) + 𝑞(𝑥)) +⟨𝑥2 + 1⟩  and the multiplication of two 

elements in C is defined as, for 𝑝(𝑥) +⟨𝑥2 + 1⟩ , 𝑞(𝑥) +⟨𝑥2 + 1⟩ 𝜖 ℂ, 

(𝑝(𝑥) +⟨𝑥2 + 1⟩) × (𝑞(𝑥) +⟨𝑥2 + 1⟩) = (𝑝(𝑥)𝑞(𝑥)) +⟨𝑥2 + 1⟩ 
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Let me invoke the knowledge from ring theory to say that ℂ is a commutative ring with identity 

with these operations. So we have found a commutative ring which is a candidate. So why is 

this a candidate?  

(Refer Slide Time: 26:30) 



 

Define 𝜑 ∶ ℝ → ℂ given by, for 𝑎 𝜖 ℝ, 𝜑(𝑎): =  𝑎 +⟨𝑥2 + 1⟩. So easy to see that this ring 

homomorphism.  

Claim: 𝜑 is injective, 𝜑 embeds ℝ into ℂ. 

To check it is injective what do we have to do? 

 Proof of the claim, 

 𝜑(𝑎) = 𝜑(𝑏) ⇒ 𝑎 +⟨𝑥2 + 1⟩= 𝑏 +⟨𝑥2 + 1⟩ ⇒ 𝑥2 + 1 divides 𝑎 − 𝑏, but 𝑎 –  𝑏 is a real 

number. Any divisible, any factor or any multiple of 𝑥2 + 1 should have at least degree 2 or 

else it should be the 0 polynomial. Since degree of 𝑎 –  𝑏  = 0. We have 𝑎 –  𝑏 =  (𝑥2 +

1) × 0 =  0 ⇒ 𝑎 = 𝑏. 
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Immediately we see that the map 𝜑 from ℝ to ℂ is an embedding, it actually gives us a copy of 

ℝ in the commutative ring ℂ. That is one aspect of the definition solved and like it may let us 

now that we can get hold of a root of 𝑥2 + 1 in this particular commutative ring. So let 𝑖 be 



defined to be, 𝑖 ≔ 𝑥 +⟨𝑥2 + 1⟩ in ℂ. 

 

Recall that ℂ is ℝ[𝑥]/⟨𝑥2 + 1⟩, so you look at the coset represented by 𝑥, then 𝑖2  +  1 =

(𝑥 +⟨𝑥2 + 1⟩)2 + (1 +⟨𝑥2 + 1⟩)  in ℂ. By the definitions of multiplication and addition that 

we have defined in the quotient, 𝑖2 + 1 = (𝑥2 + 1) +⟨𝑥2 + 1⟩ = 0 + ⟨𝑥2 + 1⟩ ⇒ 𝑖2 + 1 = 0 

in ℂ. 

Hence, we have both solution to 𝑥2 + 1 = 0 and a copy of ℝ sitting inside ℂ. So we are at least 

two of the aspects in the definition of field of complex numbers. 
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In fact, we also can say something more about the characterization, namely that this is actually 

generated by ℝ and 𝑖 and we say that any element, you look to any element in ℂ, this is 

represented by 𝑝(𝑥) +⟨𝑥2 + 1⟩, for some polynomial 𝑝(𝑥). Then this is equal to 𝑝(𝑖). 

That is, any element of ℂ can be written as polynomial expression of 𝑖 with coefficients in ℝ. 

But what can we say about any field of ℂ which contains ℝ and 𝑖? It will certainly have any 

polynomial expression in 𝑖 with coefficients because it is a field that is closed under both 

multiplication and addition. Hence any subring of ℂ which contains ℝ and 𝑖 should necessarily 

be equal to ℂ. 

The only thing that is to be checked is whether it is a field. As of now whatever we have 

constructed ℂ, it is just a commutative ring with the identity.  

 

If we establish that it is indeed a field as well, we would have proved the existence of field of 

complex numbers. 
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So let us now work towards proving that this particular commutative ring is indeed a field, but 

to do that, let us focus on the polynomial 𝑥2 + 1 in ℝ[𝑥]. The polynomial 𝑥2 + 1 is an 

irreducible element in the commutative ring ℝ[𝑥]. So the first observation would be that an 

irreducible element in ℝ [𝑥] would be prime, more specifically 𝑥2 + 1 is hence prime element. 

(Recall what was a prime element was: in a ring 𝐴, 𝑝 is defined to be a prime element if 

whenever 𝑝 divides 𝑎𝑏, the product of two elements 𝑎 and 𝑏 in ring, 𝑝 either divides 𝑎 or 𝑝 

divides 𝑏.)  

So, the claim here is that 𝑥2 + 1 is a prime element in ℝ [𝑥]. Let us just check that very quickly. 

Let 𝑥2 + 1 divide 𝑝(𝑥)𝑞(𝑥), let us prove that it divides one of them. So without loss of 

generality if 𝑥2 + 1 divides 𝑝(𝑥), then we have already proved. 

 

If  𝑥2 + 1 does not divide 𝑝(𝑥), 𝑥2  +  1 is an irreducible polynomial and therefore if you look 

at the greatest common divisor of 𝑥2 + 1 and 𝑝(𝑥), it should necessarily be 1. So it will be a 

unit, so it will be 1 here. Let me rephrase it this way since 𝑥2 +1 is irreducible, there exist 

polynomials 𝛼(𝑥) and 𝛽(𝑥) such that 𝛼(𝑥)(𝑥2 + 1) + 𝛽(𝑥)𝑝(𝑥) = 1. 
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Multiplying 𝑞(𝑥) to the equation above, we have 𝛼(𝑥)(𝑥2 + 1)𝑞(𝑥) + 𝛽(𝑥)𝑝(𝑥)𝑞(𝑥) =

𝑞(𝑥), but if you focus on the left hand side, the first term contain the factor of 𝑥2 + 1 and 

second term contain the product 𝑝(𝑥)𝑞(𝑥) and hence 𝑥2 + 1 divides both terms of left hand 

side, therefore 𝑥2 + 1 divides 𝑞(𝑥). 
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Then 𝑥2 + 1 is a prime element and therefore the ideal, ⟨𝑥2 + 1⟩ is a prime ideal. We know 

that when we go modulo a prime ideal, we get an integral domain. Since ⟨𝑥2 + 1⟩ is a prime 

ideal, we have ℂ is an integral domain.  

The fact that ℂ is a field is now established only after showing that every nonzero element can 

be inverted.  
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Notice that ℝ[𝑥], because there is a copy of ℝ is in ℝ[𝑥], is a vector space over ℝ with 

generating set given by {1, 𝑥, 𝑥2, … } and since ℂ is a quotient of our ℝ[𝑥] by an ideal, ℂ is also 

a vector space over ℝ with generating set given by{1, 𝑖, 𝑖2, … }. 
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Since 𝑖2 = −1, we have {1, 𝑖} is a spanning set of ℂ.  So we have a set consisting of 2 elements, 

which is a spanning set of ℂ. Also note this that 𝑖 does not belong to ℝ. Why is that? It is 

because if 𝑖 belongs to ℝ, then there is a real number 𝑎 in ℝ such that 𝑥 +⟨𝑥2 + 1⟩= 𝑎 +

⟨𝑥2 + 1⟩ ⇒ 𝑥 − 𝑎 𝜖 ⟨𝑥2 + 1⟩ which is not possible since  𝑥 − 𝑎 will have degree one.  

So, 𝑖 does not belong to ℝ and therefore 1 and 𝑖 turn out to be linearly independent. So hence 

{1, 𝑖} is a basis of ℂ over ℝ. 
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We have now just established a lemma. 

Lemma: ℂ is a two-dimensional vector space over ℝ. 

 

We have still not proved that ℂ is a field, so in order to do that let us take a non-zero arbitrary 

element 𝑧 in ℂ. Define 𝑀𝑧: ℂ → ℂ given by,𝑀𝑧(𝑤): = 𝑧𝑤. We have already checked that ℂ is 

an integral domain, this is left multiplication by 𝑧 and you should check that 𝑀𝑧 is actually an 

ℝ linear map, it is a linear transformation.  
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This is an easy check and you will immediately note that the null space of 𝑀𝑧 is {0}, since null 

space contain those 𝑤 such that 𝑧𝑤 = 0, but we already checked that ℂ is an integral domain 

and this can happen only if 𝑤 = 0, as 𝑧 ≠ 0. 

Therefore, 𝑀𝑧 is an injective linear transformation from a two-dimensional vector space to 



itself. We know that an injective linear transformation from a finite dimensional vector space 

to itself should necessarily be surjective by the rank-nullity theorem.  
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That means there exists some 𝑤′ such that 𝑧𝑤′ = 1. Hence 𝑧 is invertible. Therefore ℂ is a 

field. 
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We have established every aspect of ℂ being a field of complex numbers. Now have one such 

field of complex numbers. We have answered one of the questions that arose from the 

definitions satisfactorily.  

 

Let us now move over to the second one, that is more easier than this, the question of 

uniqueness. 
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Theorem: Let ℂ′ be a field of complex numbers with 𝑖′ a root of 𝑥2  + 1. Then ℂ′ is isomorphic 

to ℂ.  
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Proof:  Define 𝜓 ∶  ℂ → ℂ′ given by for 𝑝(𝑖) 𝜖 ℂ, 𝜓(𝑝(𝑖)) = 𝑝(𝑖′). So notice that it will be a 

field homomorphism from ℂ to ℂ′.  

 

𝜓(ℂ) is a subfield of ℂ′, but this 𝜓(ℂ) has certain characteristics , it contains ℝ because its 

identity on ℝ it will send ℝ to ℝ. It also contains 𝑖′ because 𝜓(𝑖) = 𝑖′ by the very definition of 

𝜓.   
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Since ℂ’ is field of complex numbers, this forces 𝜓(ℂ) to be entire ℂ′ and hence 𝜓 is a field 

isomorphism. So we have established remarkable aspect here. It tells us that any two field that 

satisfy the properties in the definition of complex number, they should necessarily be 

isomorphic to each other and therefore we could study analysis over any one such field that we 

can construct. In the next lecture, we will get hold of another such construction of a field of 

complex numbers and that will be more handy to work with and we will be doing analysis on 

that field of complex numbers some more. 

 


