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So now we have this 2 inequalities which will help us estimate our Dini derivatives. So I claim 

that if I said u n to be the union of k and j greater than equal to 1 I k n j so I am even taking the 

union over all k and all j then E q Q intersection with the set I n. Remember that I n was one of 

the open intervals considering the set u open set which covered E q Q and on which applied the 

first application of the rising sun lemma. And this set is a subset of u n and u n is the subset of I n 

the measure of u n is less than or equal to q over Q times the measure of I n. So let us see why 

these claims are true. 
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Now to prove the first part let x be a point taken outside u n but inside I n and let y be a point 

strictly greater than x inside y n inside I n. Then what we get is that f of q of y is less or equal to f 

Q of x again by the rising sun lemma because these are points in the sun. So this implies that f y 

– Q y is less than or equal to f x – Q x and this is nothing f y – f x over y – x is less than or equal 

to Q. So this implies that Lim sup of h going to 0 with h positive f x + h – f x over h is less than 

or equal to Q and this is nothing the upper Dini derivative of the positive part. 

 

This is less than or equal to q which implies that x does not belong to e q Q intersection I n 

because on this set the Dini derivative must be strictly greater than Q. So this means that E q Q 

intersection is the subset of u n. So this proves the first part and for the second part we argue as 

follows. 
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So for the second part we have m of u n which is nothing but the sum k j greater than equal to 1 

m of I k n j and m of I k n j is less than or equal to 1 over Q. Again sum over k greater than equal 

to 1 f of b k n j – f of a k n j we have already established this relation and since f is 

monotonically non-decreasing we have that this is less than or equal to 1 over Q we can sum 

over j and if you just sum over j. Then, is going to be less than or equal to f of b k n – f of a k n 

and now again because of the rising sun inequality that we had earlier. 

 

This is less than or equal to q over Q k greater than or equal to 1 m of I k n but this is the set q 

over Q m of E n and this is less than or equal to q over Q m of I n, This is a disjoint because E n 

was the disjoint union of I k n k greater than equal to 1 disjoint union. So we get our result that m 

u n is less than or equal to q over Q over times m of I n. And now we can finish the proof. 
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So we have m of E q Q this is equal to the sum of m E q Q intersection I n greater than equal to 1 

and this is less than or equal to. So this is the subset of u n remember and so this is the sum over 

m of u n which is less than or equal to q over Q n greater than equal to 1 m of I n. And now this I 

n’s are precisely the decomposition of the open set u that we took so this is nothing but q over Q 

of m of u. But m u was chosen so that this is less than q over Q times m E times Q over q. 

 

So this cancels out and so you just get m E so m E q Q here also m e E q Q and so they have a 

strict inequality between m E q Q and m E q Q which is a contradiction which proves the result. 

So this finishes the proof for continuous so differentiation theorem for continuous monotonically 

non-decreasing functions it is establishes almost everywhere differentiability for such functions. 

And now I am just going to state what happens for monotonically non-decreasing functions 

which might have discontinuities. 
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Now finally let me just take the theorem where we can drop the condition for continuity of the 

monotonically non-decreasing function. And this is a sort of the structure theorem for multiple 

monotonically non-decreasing functions. So, the first one says that if you have a monotonically 

non-decreasing function f then it as countably many points of discontinuity at x n. So it is a 

collection of countably many points in a, b where function f might be possibly discontinuous. 

 

And secondly it can be expressed as the difference of 2 functions f c and f p p where f c is 

continuous and monotonically non-decreasing and f p p. So p p stands for pure point and it is a 

sum of countably many what are called jump functions j n x. So each jump function is given by 

this formula j n x is 0 if x is less than x n. So this is the point of discontinuity and at the point of 

discontinuity it takes the fractional value of the jump that f has. 

 

So for example so if this is x n then on f comes from the left of x n but it might take a value 

higher than strictly higher than the limit the left hand side limit. And then again because it is 

increasing there will be a right hand side limit. And so this different this fraction of the entire 

length is given by this formula here. And so the jump functions are encoding this kind of these 

finite discontinuities in the function. 

 

And so this f p p is a sum of countably many such jump functions with amplitude precisely this 

alpha n which, is the difference of left hand right hand side limits. So in fact this pure point 

function f p p  is differentiable almost everywhere and vanishes the derivative vanishes almost 



everywhere. And since we have already prove that this one is since it is continuous and 

monotonically non-decreasing it is differentiable almost everywhere. So then f is differentiable 

almost everywhere so for all this proof’s I will refer you.  
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So for the proof’s reference is Stein and Shakarchi’s book Shakarchi section 3.3 where you will 

find the detail proof for these results. So this finishes our discussion for the differentiability 

theorems for functions which are of bounded variation as well as functions which are 

monotonically non-decreasing. Finally let me just say some concluding remarks about the second 

fundamental theorem of calculus. 

 

So it says that if f from a, b to R is differentiable and f prime is Riemann integrable then the 

integral a to be of, f prime x d x is nothing but f b – f of a. So we can try to ask whether even if 

we have let us say a continuous function which is in l1 over a, b and which is differentiable 

almost everywhere in a, b then whether such a formula holds. First of all a continuous function 

may be nowhere differentiable an example is given by the so called Weiestrass function which is 

given by this sum sin of a to the power n Pi x. 

 

And so this is defined over 0, 1 to R and one can show that this is nowhere differentiable in this 

interval 0, 1. On the other hand there are continuous functions which might be differentiable 

almost everywhere but for which these kinds of functions these kinds of equations do not hold if 

we replace the Riemann integral by the Lebesgue integral.  
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So even if we have a differentiable almost everywhere differentiable function f for which the 

derivative is in l1. Then in that case it is not true that the Lebesgue integral of a prime give you f 

b – f a. So a counter example given by the contra function on the defined using the contra set and 

for this function the derivative is 0 almost everywhere because it is constant almost everywhere. 

So the derivative is 0 almost everywhere but f 0 is 0 and f1 is 1. So the left hand side is 0 but the 

right hand side is 1. 
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We make the following definition for absolutely continuous functions. So this is a function f and 

it is said to be absolutely continuous if given epsilon greater than 0. There exists delta greater 



than 0 such that we have the following condition that if there exists finitely many disjoint open 

intervals a k, b k. So this is the finite collection of disjoint open intervals in a, b such that the 

total length of this union is bounded by delta then the variation.  

 

So this is the sort of a variation of f over this intervals is less the epsilon. So these are called 

absolutely continuous functions. Now note that absolutely continuous functions are continuous 

and in fact uniformly continuous on a, b. And the point is that the absolutely continuous 

functions the analog of second fundamental theorem of calculus holds for the Lebesgue integral.  
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And so the point is here is that the second fundamental theorem of calculus will hold for 

absolutely continuous functions.  So if you have an absolutely continuous function on a compact 

interval a, b. Fist that f is differentiable almost everywhere f prime is an absolutely integrable 

function on a, b and thirdly that the integral over a, b of, f prime is precisely f b – f a. Now the 

first 2 are actually consequences of the fact that absolutely continuous functions are of bounded 

variation.  

 

So we have shown that for function of bounded variation it is differentiable almost everywhere. 

It is also true that the derivative of the bounded variation function which is defined almost 

everywhere is in fact an l1 function. So this third part is the absolute continuity place a role that 

the second fundamental theorem of calculus holds. So we come to the end of this topic about 

differentiation theorems. 


