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Lecture – 7 Properties of the elementary measure Part 2

Now as an immediate corollary, we have that if E and F are el-
ementary sets in Rn, then the symmetric difference of E and F is
also elementary. So, what is the symmetric difference? This is simply
(E–F )∪ (F–E) and we know that this is an elementary set and so the
union is also an elementary set. Now, let us look at the properties of
our elementary measure.

The first property is non-negativity. It says that for any elementary
set E, m(E) is a non-negative number and it is always finite. So, it is
always a finite non-negative number and if you have the empty set, then
the elementary measure is 0. As you can write here ∅ = I1 × · · · × In,
to be the Cartesian product of intervals I1, . . . , In, where each Ii is
an empty interval. Empty interval meaning that it can be written
as{x ∈ R | ai < x < ai} as our conventions allow us to have empty
intervals like this. Then the measure of m(Ii) = 0. So we have that
the measure of the empty set is always 0.
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And for any other elementary set it can be either 0 or only a positive
number because we have defined our measure of the intervals Ii to be
a positive number and always finite. We are only considering bounded
intervals, so therefore our length of those intervals will always be finite.
So, we have a non-negative finite number for our elementary measures
m(E).

(Refer Slide Time: 03:40) The second property is finite additivity which
we saw in the earlier next lectures that this is something geometrically
reasonable to expect and it is what we aspire to have and the way we
have defined it, of course it conforms to our geometric notion of length
or volume or area, but now we will see that it will also satisfy our finite
additivity property. If E1, E2, . . . , En are elementary disjoint subsets
of Rn, then

m(E1 ∪ E2 ∪ EN) =
N∑
i=1

m(Ei)

We have seen this property for two sets E and F , but of course by
induction you can prove it: union of finitely many elementary sets is
elementary and the elementary measure of the union is simply the sum
of the elementary measures of each individual Ei’s, when you have
disjoint elementary subsets. This is known as finite additivity. Let us
say E is the union of Bi’s and F is a union B′

j. Then E ∪ F is union
of Bi’s and B′

j’s. Now this is a finite union of disjoint boxes and so
we have seen that this measure of the union is the sum of measure of
the individual boxes. Of course, for two subsets, it is easy to show and
for N subsets we use an induction argument to show the same formula
holds. This is the finite additivity property of elementary measures.
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(Refer Slide Time: 08:01) Now from the first two property, we can
deduce another property which is monotonicity. This says that if E
is an elementary set and E is a subset of an elementary set, F is also
an elementary set, then the elementary measure of E is less than or
equal to the elementary measure of F . Let us see how we can deduce
it from the first two properties. First of all, the measure of F can be
written as the measure of E union the measure of F − E, note that
here E is elementary. We have seen from previous lemma that F − E
is also elementary set. So, the elementary measure is again well define.
Now E and F–E are disjoint elementary sets. Therefore, we have the
measure of F minus the measure of of E is non negative. Hence we
get measure E is less than or equal to measure F . Therefore, our
elementary measure satisfies the monotonicity property.

(Refer Slide Time: 10:51)Now, the next property is called finite sub-
additivity. We have seen what is finite additivity, but this is finite



4 PROF. INDRAVA ROY

sub-additivity by which we mean the following. If E, F are elementary
sets in Rn, not necessarily disjoint this time. Then their union E∪F =
E ∪ (F − E) is again elementary. Then m(E ∪ F ) ≤ m(E) + m(F ).
This is called the finite sub-additivity property. So, the difference here
is that there is a less than or equal to sign rather than equal to sign,
which appears in the finite additivity property. Because it is less than
or equal to, it is called finite sub-additivity. Now, if you do an induction
on the number of elementary sets, so if you have E1, . . . , En elementary
sets in Rn, again not necessarily disjoint, then the measure of the union
of all these sets is less than or equal to the sum of measures of their
individuals. This is a generalization to any finite number of elementary
sets and this finite sub-additivity property still holds. So, let us see
the easy proof. So, here let me just prove it for two elementary sets E
and F . Now, let me write E ∪ F as E ∪ (F–E). Now, these two are
disjoint, so this is a disjoint union of elementary sets. Then

m(E ∪ F ) = m(E) + m(F–E)

and hence m(E ∪F ) ≤ m(E) +m(F ), because F −E is a subset of F .
So, by monotonicity we get this immediately.

One could also use other different decompositions using the intersec-
tion.

(Refer Slide Time: 14:33)
Observation: If you have E and F to be elementary, then E ∩F is

also elementary. This is because E ∩ F is (E ∪ F ) \ (E∆F ). Now we
have the following lemma whose proof is left as an exercise.

Lemma: m(E ∪ F ) = m(E) + m(F )−m(E ∩ F ).
As a consequence of this lemma one can see the finite sub-additivity

property because m(E ∩ F ) is non negative.
(Refer Slide Time: 16:55)
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Now, for the last property, we have already seen that the elementary
measurement on boxes is translation invariant, but it will also of course
work for any elementary set. So, for elementary set E and x ∈ Rn,
we have m(E + x) = m(E). So, this is very easy to prove and I also
leave this as an exercise. We stop our lecture here, and in the next
lectures, we will introduce the concept of Jordan measure and Jordan
measurability.


