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In this lecture we will look at a proof for Lebesgue differentiation theorem in R which was 

stated in the last lecture. So it says let me recall it says that if you take an absolutely 

integrable function on R and if you define its associated integral function capital F which is 

the integral over the interval – infinity to x of f t d t then this integral function is first 

continuous and then differentiable almost everywhere in R and the derivative is equal to the 

original function f x almost everywhere in R. 

 

So we have already shown that this is continuous in the last lecture and we will continue our 

proof and take care of differentiability almost everywhere in this lecture which requires 

substantially more work than continuity.  
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So let us look at the proof. So, I will follow the proof outlined in Stein and Shakarchi. So I 

will follow their method to prove this result. So, the first step is to note that it suffices to 

show that for any alpha > 0 the set E alpha defined as follows. So this is the set of all x in R 

such that the lim sup as h goes to 0 1 over h integral x to x + h f t d t – f x and you take the 

modulus of this is greater than 2 alpha has measure 0. 

 

Because this would imply that E 0 which is the set of all R such that the set of all x in R such 

that the lim sup h goes to 0 and the same expression as before x x + h f t d t – f x is greater 

than 0 is nothing, but the countable union of E 1 over n in N and since each has measure 0 

then it would follow that m E 0 is 0 which means that this two things are equal as limit h 

tends to 0 almost everywhere in x.  

 

So it suffices to show this for this set E alpha that it has measure 0. So m E alpha = 0. So, let 

us try to see how we can show that m E alpha = 0 for any alpha > 0.  
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So, for this let us fix alpha for the rest of this proof and let epsilon > 0 be a given arbitrary 

number. Now we know that the compactly supported continuous functions are dense in L 1 

functions. So there exist g in c c R such that so far this given epsilon there exist g such that 

the L 1 norm of f – g L 1 R is less than or equal to epsilon. So this we have already seen that 

the continuous compactly supported functions are dense in the L 1 norm and so we can 

choose this g for given epsilon. 

 

And now if we write integral 1 over h integral x, x + h f t d t – f x. Now I am going to add 

and subtract some relevant terms f t d t – 1 over h x to x + h g t d t then I have to add again 1 

over h x to x + h g t d t and then again I am going to subtract g x so – g x – f x and then again 

+ g x so I am putting it in the bracket with the f – f so it becomes minus. So I am plugging in 

this two terms 1 over h integral g t d t over x to x + h and g x.  

 

So, now we know from the first fundamental theorem of calculus that we saw in the last 

lecture that the limit as h tends to 0 1 over h integral x to x + h g t d t is equal to g x for all x 

which is (()) (07:26). So, I can take the support of g as the compact set on which x can move 

or I can take some interval a b which contains the support of g. So this is a compact set so 

you can always have a finite (()) (07:55) interval a b which contains this support of g.  

 

So on this set we have this that the limit as h tends to 0 1 over h integral g t over x to x + h is 

equal to g x. So the term in the middle if you take the lim sup on both sides the term in the 

middle is going to vanish because this is the same as taking lim sup as h tends to 0 so this is 



going to give you 0 this whole thing is 0. So we are left with these two terms so we will deal 

with them separately.  
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So we see that lim sup as h tends to 0 modulus of 1 over h integral x to x + h f t d t – f x is 

equal to or rather is less than or equal to the lim sup as h tends to 0 1 over h integral x to x + h 

f t – g t d t – f x – g x and now another application of the triangle inequality will give you the 

lim sup h tends to 0 1 over h integral x to x + h modulus of f t – g t d t + so there is no h in 

this one so you simply get modulus of f x – g x.  

 

So we get this inequality and now if we denote for a function f in L 1 of R if we denote M f 

this is again from R to C which is a function defined as follows. So this is the supremum as 

over h > 0 1 over h integral x to x + h f t mod d t. So this function has a name this is called 

the maximal function of f and it is something like a supremum over all the average values of 

that f takes over intervals containing x on the right hand side so only right handed intervals 

containing x.  

 

So if we have this then we can bound the first term which is lim sup as h tends to 0 by the 

supremum as of h > 0. So this term here is bounded above by the maximal function of f – g 

because you are taking the lim sup as h goes to 0 and this is less than or equal to the 

supremum over all h greater than 0 of the same expression. So for this maximal function. 
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Let us write first what we get. So we get lim sup h goes to 0 so again all this h goes to 0 at the 

time taking should be from the right hand side. We can also use the left hand side, but let me 

just take the right handed limits everywhere I am going to take the right handed limits. So, 

with this maximal function so I get this inequality 1 over h f t d t over x, x + h – f x modulus 

is less than or equal to M f – g at x + modulus of f x – g x. 

 

So now if we let F alpha to be the set of all x in R such that the maximal function of f – g x is 

greater than alpha and g alpha is the set of all x in R such that mod of f x – g x is greater than 

alpha. So, now we note that if x belongs to E alpha then either x belongs to F alpha or x 

belongs to G alpha because note that for F alpha we have this inequality that this left hand 

side given by the lim sup is greater than two alpha. 

 

And so since if you have two numbers lambda 1 and lambda 2 and if you add them and if you 

get greater than 2 alpha this implies either lambda 1 is greater than alpha or lambda 2 is 

greater than alpha. So either the first term is greater than alpha or the second term is greater 

than alpha which means that if x is E alpha then x belongs to either f alpha or g alpha which 

is another way of saying that.  

 

E alpha is contained in the union of F alpha and G alpha which means that the measure of E 

alpha is less than or equal to the measure of F alpha + the measure of G alpha. Now the 

measure of G alpha is quite easy to estimate by Markov's inequality.  
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So by Markov's inequality we get the measure of G alpha is less than or equal to 1 over alpha 

L 1 norm of f – g and so this term is actually so for the second term in the last inequality here. 

So this term is less than or equal to epsilon / alpha because this is less than or equal to epsilon 

g was chosen to be less than such that L 1 norm of f – g is less than or equal to epsilon. So, 

the measure of g alpha is less than or equal to epsilon / alpha.  

 

Now the main thing to show is that the measure of F alpha satisfies the similar inequality and 

this inequality has a name this is called the Hardy-Littlewood Maximal Inequality and it says 

that the maximal function so if f is in L 1 of R then the maximal function so rather I should 

say that the measure of the set of points in R such that the maximal function of f > alpha is 

less than or equal to 3 over alpha L 1 norm of f.  

 

So this is a kind of inequality these are called weak type inequalities and these are extremely 

useful in doing analysis when you are trying to measure the variation of this L 1 function f 

when you vary the integral over large intervals well the average of the integral values. So 

because M f is the supremum over h > 0 1 over h x to x + h f t mod d t. So, this is this term 

that you are taking the supremum of is some kind of average value that the function f takes 

over large intervals.  

 

So this Hardy-Littlewood Maximal Inequality is giving us the required estimate because this 

is nothing, but F alpha. So, let us suppose that the Hardy-Littlewood Maximal Inequality 

holds and then let us finish the proof.  
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So by Hardy-Littlewood Maximal Inequality and Markov's inequality we get that the measure 

of E alpha which is less than or equal to measure of F alpha + measure of G alpha this is less 

than or equal to 3 over alpha norm f – g L 1 norm + 1 over alpha norm of f – L 1 norm of f – 

g. So this first term is by Hardy-Littlewood and the second term is by Markov. So, then we 

get this is equal to less than or equal to 4 over alpha times epsilon. 

 

And so since alpha is fixed and epsilon is arbitrary we get the measure of E alpha equals 0 

and this shows the statement for Lebesgue differentiation theorem. So now we still have to 

show that this inequity holds. So this inequality 1 holds so provided 1 holds. So, let us go into 

the detail of the proof of the Hardy-Littlewood Maximal Inequality.  
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So, let us see a generalization of our needed result where we can state this for general R d 

rather than just the one dimensional case and this is again the Hardy-Littlewood Maximal 

function and Hardy-Littlewood Maximal Inequality. So, if you take an L 1 function in R d 

then you can define the maximal function in a very similar way to what we did earlier. So we 

are taking in first the integral of mod f over Euclidean ball so these are Euclidean balls with 

center x and radius r. 

 

So take the integral over such balls and then you divide it by the measure of this Euclidean 

ball and then you take the supremum over all positive radius r > 0 what you get is called the 

Hardy-Littlewood Maximal function so this is the Hardy-Littlewood Maximal function and 

so the statement of this theorem says three things. First is that the Hardy-Littlewood Maximal 

function which is defined as a function from R d with values in c this is a measurable 

function.  

 

Second is that it is finite almost everywhere in R d and the third is the Hardy-Littlewood 

Maximal Inequality so this part is the Hardy-Littlewood Maximal Inequality which says that 

the measure of points in R d for which M f there should be an x here M f x > alpha is less 

than or equal to 3 to the power d over alpha times the L 1 norm of f. So this is the main third 

part is the main part most significant part of this theorem.  

 

And in fact 3 implies 2 so 3 we note it another color the 3 implies 2 because if you vary if 

you take alpha higher and higher and take the limit as alpha goes to infinity you get 0 on the 

right hand side and if you take the union on the left hand side you will get the measure of the 

set of all x such that M f equals infinity. So in fact this maximal function actually takes 

values in 0 + infinity the extended non-negative (()) (24:50) because we are taking the 

absolute value inside the integral.  

 

So then the second part makes sense that the maximal function is finite almost everywhere 

and if you take like I said the limit as alpha goes to infinity on the right hand side of the third 

part and the union of all these sets on the left hand side then you would get exactly part 2. So 

for part 1 let us do part 1 first so let us see a proof of this theorem.  
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So for the first part we have to show that the set A alpha defines as x in R d such that M f x is 

greater than alpha is a Borel set and in fact I make the following claim that so this is for any 

alpha positive and finite. So I claim that A alpha is open. So, in terms of functions this is 

equivalent to saying that M f is so called lower semi continuous function. So this is just a side 

remark and it is not important to go into detail of lower semi continuity and upper semi 

continuity, but let us see how to prove that A alpha is open. 

 

So let us take x in A alpha so there exist an r > 0 such that 1 over the measure of B x r 

integral over B x r mod f d m is greater than alpha. So this is by definition of the Hardy-

Littlewood Maximal function which is the supremum over all such things. So, the maximal 

function is greater than alpha then there exist an r for which this is also greater than alpha by 

the properties of the supremum. 

 

And since the measure of B x r is of the form alpha d times r to the power d so let me put c d 

times r to the power d in d dimensions the volume of Euclidean ball of radius r is proportional 

to r to the power d where c d is an absolute constant so it does not depend on x or r as to be a 

positive constant. So, this implies there exist an r prime greater than 0 such that 1 over m 

measure of B x r prime integral over B x r mod f d m is still greater than alpha. 

 

So, I am just enlarging let me r prime > r I am just enlarging r so if you enlarge r so this is 

nothing, but c d times r prime to the power d and this is nothing, but c d times r to the power 

d. So, if you increase r the value on the left hand side of this inequality will drop because the 



value of the denominator has increased, but we can find r prime close enough to r such that 

the value does not drop too much and it does not go below or equal to alpha.  

 

So, this is just by the continuity of this function 1 over r to the power d for strictly positive 

values of r. So we can find such an r prime such that this holds. 
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And now take choose x prime in R d such that the norm of x prime – x is less than or equal to 

r prime – r. So in that case we will have the ball centered at x with radius r is contained inside 

the Euclidean ball with center x prime and radius r prime because if y belongs to B x r which 

means that the norm of x – y is less than or equal to r and then this implies that the norm of x 

prime – y is less than or equal to x prime – x norm + norm of x – y.  

 

So this is nothing, but r prime – r + r this is r prime which means that y belongs to the 

Euclidean ball centered at x prime and with radius r prime. So once we have this then we get 

this implies that so remember that we started out with this equation so this let me write this 

inequality as 1 so and let this be 2. So, by 2 we get alpha which is less than 1 over the 

measure of B x r prime integral B x r mod of f d m and this is less than 1 over measure of B x 

prime r prime.  

 

So I can just replace here this x this x here replace with x prime because it was not changed 

the measure of the Euclidean ball because by translation in variance the measures of all this 

Euclidean balls is independent of x and secondly this is less than or equal to B x prime r 



prime mod f d m this is by this inclusion of B x r in B x prime r prime. So B x r is included in 

B x prime r prime so the integral is bounded above. 

 

But on the right side what we get is this implies that the supremum over r prime > 0 1 over 

the measure of B x prime r prime integral over B x prime r prime mod f d m is greater than 

alpha because it is true for r prime. So it is true for all r prime > 0 because you are taking the 

supremum so if you take the supremum rather the supremum or all r prime > 0 this will still 

hold this inequality will still hold. 
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And so but on the left hand side we have M f x prime > alpha. So, this means that x prime 

belongs to A alpha and in fact I could have taken here an open ball around x with radius r 

prime – r and one would still have this chain of inequalities here we would have strictly less 

than or equal to r, but here may be strictly less than r, but this still holds and so finally we 

will get that.  

 

We have found a Euclidean ball of radius r prime – prime around x for which any point lying 

in the Euclidean ball will satisfy M f x prime > alpha. So this means that A alpha is open. So 

this proves the first part and as we noted above that part 3 implies part 2 so it is suffices to 

show only part 3 now and so this is the most significant part of the proof and it requires 

another result which is called Vitali covering lemma.  


