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So, let us continue with our study of the basic properties of the elementary measure. Before 

we do that, I would like to state an easy observation or you can state it as a Lemma. 

Observation / Lemma:  Let us suppose that we are in . If   and  are elementary sets in 

, then  

(i)  is an elementary set. 

(ii)  is an elementary set. 

(iii) If  is translated by an element  in ,  then  (  ) is also elementary.  

This we have already seen before, but let us review it here. The proof is quite easy.  

Proof: (i) So for the first part, it is very easy. Write  and  as a union of disjoint or non-

disjoint boxes, that is,  

                , 

and 

                 

ℝn E F

ℝn

E ∪ F

E ∖F

E x ℝn E + x

E F

E =
n

⋃
i=1

Bi

F =
m
⋃
j=1

B′ j



where  for each Then  union  is simply the union of the two things,  

                                    

 and it is obvious that this is a finite union of boxes in . So it is quite obvious that the union 

of two elementary sets is elementary.  
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(ii) Now, let us come to the second one, that is . Let us again assume that  

                           

and,  

                           . 

such that  for each Then  is simply  intersection by 

complement of . So you can write it as follows. 

                   

                           

Now you can use De Morgan's law. 

Bi, B′ j ∈ ℝn i, j . E F

E ⋃F = ( n
⋃
i=1

Bi)⋃(
m
⋃
j=1

B′ j)
ℝn

E ∖F

E =
N
⋃
i=1

Bi

F =
M
⋃
j=1

B′ j

Bi, B′ j are boxes in ℝn i, j . E ∖F E

F

E ∖F = E ∩ F𝖼

= ( N
⋃
i=1

Bi)⋂(
M
⋃
j=1

B′ j)
𝖼



So you will get, 

                    

                             

Let me call  as  for . So if we show that each  is an 

elementary set, then we are done due to the first property of union of elementary sets being 

elementary.  

So now let us try to show that each of these ’s are elementary and we will do an induction 

on the number of boxes that are used to define the elementary set . So if we can do an 

induction on M and show that for each M this is an elementary set, then we are done because 

then we will have a finite union of elementary sets, which is elementary. So let us try to do 

that. 
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To prove: If  is a box then  is elementary.  

So first take , and this is our base case for the induction. Suppose  is a box. We have 

E ∖F = ( N
⋃
i=1

Bi)⋂(
M
⋂
j=1

(B′ j)
𝖼

)
=

N
⋃
i=1

Bi⋂(
M
⋂
j=1

(B′ j)
𝖼

)

Bi⋂(
M
⋂
j=1

(B′ j)
𝖼

) Ci i = 1,...,N Ci

Ci

F

B B⋂(
M
⋂
j=1

(B′ j)
𝖼

)
M = 1 B′ 1



to show that     is elementary.  

So what we are going to do is to break it up into coordinates and we will see what happens 

for each coordinate. Remember that B is a box in , so it is a Cartesian product of intervals, 

that is 

                                  , 

 where each  is a bounded interval in  for . Similarly  is a box. So this is a 

Cartesian product of let us say, 

                                 , 

such that each  is a bounded interval in  for . 

Now we have to use some formula which describes the complement of a Cartesian product of  

 sets in terms of the complement of the individual coordinates sets. So I want to write down 

a formula for  and this is as follows. 
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So we write as a union of components where first component is a union of 

, where  varies from 1 to . So the first component is a union of 

 sets with the -th set with a compliment. Then we have the second component which is a 

union of  over  and  and . So now you will have 

two coordinates with complements and the rest remain the same. Here we are assuming   

because if , then you will just have one set. So this is for distinct coordinates  and  and 

you will put a complement for each of the coordinates  and . Similarly we get the third 

components for  such that  and three coordinates with the 

B⋂(B′ 1)𝖼

ℝn

B = I1 × I2 × . . . × In

Ik ℝ k = 1,2,...,n B′ 1

B′ 1 = J1 × J2 × . . . × Jn

Jk ℝ k = 1,2,...,n

n

(B′ 1)𝖼

(B′ 1)𝖼

(J1 × J2 × . . . × J𝖼
i . . . × Jn) i n

n j

(J1 × J2 × . . . × J𝖼
i × . . . × J𝖼

j . . . × Jn) i j i ≠ j

i ≠ j

i = j i j

Ji Jj

i, j, k = 1,...,n i ≠ j ≠ k



complement and the rest are the same and in the end you have the union of the sets where all 

the  coordinates are with a complement. That is, 

 

        . 

This formula is a bit tedious and might look scary, but the idea is very simple, and it just uses 

the elementary operations of unions and complements and cross products of Cartesian 

products. So I suggest you to go back and check what are the formulas when you have the 

Cartesian product of a union or the union of Cartesian products and so on and then what 

happens when you take the complements for such unions. 

This is a union. So when we take the intersection of all these unions with our box , then you 

can distribute this Cartesian product inside the unions and then you will have an intersection 

of two Cartesian products and then again you can distribute it. So let’s write this down 

carefully. 
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n

(B′ 1)𝖼

= ( n
⋃
i=1

(J1 × J2 × . . . × J𝖼
i . . . × Jn))⋃ ⋃

i, j
i ≠ j

(J1 × J2 × . . . × J𝖼
i × . . . × J𝖼

j . . . × Jn)

⋃ ⋃
i, j, k

i ≠ j ≠ k

(J1 × J2 × . . . × J𝖼
i × . . . × J𝖼

j . . . × J𝖼
k . . . × Jn) . . . ⋃(J𝖼

1 × . . . × J𝖼
n)

B



 

  

 

 

. 

So you have for each of these an intersection of two sets each of which are Cartesian products 

themselves. So let us consider for example unions from the first group, let us call this set .  
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B⋂(B′ 1)𝖼

= [ n
⋃
i=1

[(J1 × J2 × . . . × J𝖼
i . . . × Jn)⋂(I1 × I2 × . . . × In)]]

⋃ ⋃
i, j

i ≠ j

[(J1 × J2 × . . . × J𝖼
i × . . . × J𝖼

j . . . × Jn)⋂(I1 × I2 × . . . × In)]

⋃ ⋃
i, j, k

i ≠ j ≠ k

[(J1 × J2 × . . . × J𝖼
i × . . . × J𝖼

j . . . × J𝖼
k . . . × Jn)⋂(I1 × I2 × . . . × In)]

. . . ⋃[(J𝖼
1 × . . . × J𝖼

n)⋂(I1 × I2 × . . . × In)]

A1



 

That is . 

So this is just by the property of cross products and intersections,  

. 

So, now we have a finite union of such elements. So if we can prove that all these sets are 

boxes, then we will be done because then will be an elementary set. 

Similarly one could do for other groups where you have two complements, three 

complements or  complements and they will all be of the same form. So the idea is to show 

that if you have two intervals, then the intersection can either be empty or it will be another 

interval. If you can show that intersection of the complement of an interval with another 

interval is also an interval, then we would be done because then it will be a Cartesian product 

of intervals and so it will be a box. So, it suffices to show that if  and  are intervals in  

then  complement is also an interval or a union of intervals. So this is again quite easy 

and I leave it to you as an exercise, check that this claim holds.  

So for example, I will just give a visual idea here. 

 

 

                                                      

A1 =
n

⋃
i=1

[(J1 × J2 × . . . × J𝖼
i . . . × Jn)⋂(I1 × I2 × . . . × In)]

=
n

⋃
i=1

[(J1⋂ I1) × (J2⋂ I2) × . . . × (J𝖼
i ⋂ Ii) . . . × (Jn⋂ In)]

A1

n

I J ℝ

I ∩ J𝖼

a bc d ℝ



So if you have the interval  from a to b and you have interval  from c to d as above. So  is 

the region left of c and right of d. Then  is simply the region from a to c. So similarly 

you can check all other cases. If  and  are disjoint intervals, then  will simply be . In 

all other cases  will be an interval. It is very easy to prove, and I leave it as an exercise 

for you.  

Therefore, we have that all the constituent sets in the union of  is given by boxes. 

Therefore,  is an elementary set because it is a finite union of boxes. Now we can go back 

to the other groups . Since you have the intersection coordinate wise, therefore 

each one will be an interval and each of these constituent sets will be a box and therefore you 

will have a finite union of boxes. In particular  itself is a box because you have just one 

constituent set. Therefore we have proved that  is an elementary set. So this proves 

the base case for our induction. 
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Now we come at the induction step. Assume that if  ’s are boxes for , then  

 is an elementary set. We will have to prove that if  ’s are boxes for 

, then  is an elementary set. This will prove our 

I J J𝖼

I ∩ J𝖼

I J I ∩ J𝖼 I

I ∩ J𝖼

A1

A1

A2, A3, . . . , An

An

B⋂(B′ 1)𝖼

B′ j j = 1,2,...,M

B⋂(
M
⋂
j=1

(B′ j)
𝖼

) B′ j

j = 1,2,...,M + 1 B⋂(
M+1
⋂
j=1

(B′ j)
𝖼

)



induction hypothesis. So, let us write down what is . Note that you can 

take out  of these and group it with . So, 

                     . 

 Now from our induction hypothesis we know that,  is an elementary set. 

This is in fact a finite union of boxes, let us call it  , where each  is a box. Now we 

have to take . 
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So now we can distribute it inside the union. This implies  

                               . 

So we are just distributing the intersection inside the union and now this is a box. We have 

already proved from the base case that for each , is an elementary 

B⋂(
M+1
⋂
j=1

(B′ j)
𝖼

)
M (B′ j)

𝖼
B

B⋂(
M+1
⋂
j=1

(B′ j)
𝖼

) = B⋂(
M
⋂
j=1

(B′ j)
𝖼

) ⋂(B′ M+1)𝖼

B⋂(
M
⋂
j=1

(B′ j)
𝖼

)
l

⋃
k=1

Ck Ck

( l
⋃
k=1

Ck)⋂(B′ M+1)𝖼

B⋂(
M+1
⋂
j=1

(B′ j)
𝖼

) =
l

⋃
k=1

(Ck⋂(B′ M+1)𝖼)

M = 1 k (Ck⋂(B′ M+1)𝖼)



set. Now we have again a finite union of elementary sets. This implies     

is an elementary set. This implies if  , and  , then 

                                 . 

Each of  is elementary, so is the union, and hence  is elementary. 

This completes our proof.

B⋂(
M+1
⋂
j=1

(B′ j)
𝖼

)
E =

N
⋃
i=1

Bi F =
M
⋃
j=1

B′ j

E⋂F𝖼 =
N
⋃
i=1

Bi⋂(
M
⋂
j=1

(B′ j)
𝖼

)
Bi⋂(

M
⋂
j=1

(B′ j)
𝖼

) E⋂F𝖼


