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Riesz Representation theorem – Motivation 

 

We now come to new topic and this is about the Riesz representation theorem so this Riesz 

representation theorem is another method to define measures on topological spaces which have 

some nice properties.  
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So let me recall what we have seen so far in terms of methods of constructing measures. So first 

we have seen on Rd we have seen the Lebesgue measure m on defined on the Lebesgue sigma 

algebra L of Rd. So this is the collection Lebesgue measureable sets and this forms sigma 

algebra so this construction was via the Lebesgue outer measure. And we defined a concept of 

Lebesgue measurability with respect to this Lebesgue outer measure Lebesgue measurability. 

 

So we saw that the sigma algebra of Lebesgue measureable sets when we restrict the Lebesgue 

measure on the sigma algebra it has some nice properties namely it has the countable additivitiy 

property for disjoint collections of Lebesgue measurable sets. So this was specifically on Rd then 

on abstract measure spaces we saw 2 ways of defining a measure. So the first one was via given 

an outer measure mu star.  



 

Then the Caratheodory extension theorem gives you a measure mu on a sigma algebra B where 

rather I used notation C mu star of X. Where, C mu Star of X was the sigma algebra of 

Caratheodory measurable sets and this precisely the once that satisfies the Caratheodory criteria.  
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The other way was to use the Hahn Kolmogorov extension theorem and this was the input data 

for this was given a premeasure mu naught on a Boolean algebra B naught on X. Then the Hahn 

Kolmogorov extension theorem gives you a sigma algebra B which contains this Boolean 

algebra B naught and a measure mu on B such that mu restricted to B naught equals mu naught. 

So this was the extension theorem because this measure mu extends mu naught and we saw that 

both this methods for abstract measure spaces. 

 

Namely the Caratheodory extension theorem and the Hahn Kolmogorov extension theorem can 

be applied to Rd. And when we use the Jordan measure as the premeasure on Jordan 

measureable Boolean algebra of Jordan measureable sets then we get back the Lebesgue 

measure. And similarly when we use the Lebesgue outer measure and use the Caratheodory 

extension theorem then we again get back the Lebesgue sigma algebra. 

 

So Caratheodory measurability so let me put this as a remark that Caratheodory measurability 

which respect the Lebesgue outer measure m star is equivalent to Lebesgue measurability. So 

this means that the sigma algebra of Lebesgue measureable sets is the same as the sigma algebra 



of Caratheodory measurable sets with respect to the Lebesgue outer measure. So this we have 

already seen before and in terms of so this is the first remark and the second remark is that in 

terms of.  

 

If we take mu naught is the Jordan measure on B naught being the Boolean algebra of Jordan 

measurable sets. Then again the induced measure that we get from the Hahn Kolmogorov 

extension theorem is the Lebesgue measure again. So in this sense these 2 approaches when 

applied to Rd gives you back the Lebesgue measure when you choose the Jordan measure using 

the Hahn Kolmogorov extension theorem. And when, you choose the Lebesgue outer measure 

using the Caratheodory extension theorem. 
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So now the Riesz representation theorem where it fits in this scheme the Riesz representation 

theorem fits in the following way. So if we take X to be Rd then the following  map the map 

which takes a function in L1 of Rd with the Lebesgue to its Lebesgue integral d m this is a linear 

functional. So linear functional means that so let me define what is a linear functional? So if V is 

a vector space let us say a complex vector space and linear functional is a linear map lambda 

from V to C. 

 

Meaning that if alpha beta are complex constants and v1 and v2 belong to V then we have 

lambda of alpha v1 + beta v2 should be equal to alpha lambda v1 + beta lambda v2. So this is the 

well-known linearity property and of course we have seen that the Lebesgue integration is linear 



in this sense because if you take integral alpha f + beta g for 2 functions f g in L1. We have that 

then Lebesgue integral of alpha + beta g is equal to alpha times the Lebesgue integral of f + beta 

times the Lebesgue integral of g. 

 

So this is an example of a so the Lebesgue integral is an example of linear functional over L1 of 

Rd.  
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So let me out this as a remark that the Lebesgue integral functional is a linear functional on L1 

Rd with the Lebesgue measurable. Now this Lebesgue integral also has the nice property of non-

negativity meaning that if f is a positive function in L1 Rd then the integral of, f is a positive 

number rather a non-negative number. So this property of the Lebesgue integral functional 

makes it towards called a positive linear functional. 

 

So let me define what is a functional linear functional let sigma be a sub-space of L1 Rd be a 

linear sub-space. Then a linear functional lambda which takes elements of sigma and gives you 

back complex numbers is called positive. If we have for f positive in sigma lambda f is positive 

in C. So this implies lambda f is positive in C. So with this definition we see that the Lebesgue 

integral is a positive linear functional. 

 

So we have defined or rather we have obtained a positive linear function from our measure 

which was the Lebesgue measure on Rd.  
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So the Riesz representation theorem gives a converse meaning that for an appropriately defined 

positive linear functional on a suitable. So let me call it lambda on suitable linear sub-space 

sigma of L1 Rd we can recover the Lebesgue measure. So in our case the appropriately defined 

positive linear functional lambda will in fact be the Riemann integration functional and sigma we 

take sigma to be the space of continuous compactly supported functions on Rd. 

 

So these are functions Rd to C such that f is continuous with compact support and lambda when 

you define lambda from CC Rd to C given by lambda f equals integral over some big box B or 

let me write Rd here. Because f x d x so this is the Riemann integral functional which is also a 

positive linear functional. And when we define a Lambda with this we get back via the Riesz 

representation theorem we get back the Lebesgue measure. 

 

So this is the yet another construction of Lebesgue measure and of course on we get back also 

the sigma algebra of Lebesgue measurable sets. So in fact the Riesz representation theorem 

works not only for Rd it also works for any locally compact Hausdorff space.  
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So let me recall what are locally compact Hausdorff spaces? So the definition for locally 

compact Hausdorff spaces is as follows. So a topological space X let us say we should already 

assume Hausdorff because this is something you know already. A Hausdorff space X is called 

locally compact if every point as a neighborhood whose closure is compact. So this is what a 

locally compact Hausdorff space is of course as an example we already have Rd this is due to the 

Heine-Borel theorem. 

 

Because if X belongs to Rd then B x, r the open Euclidian ball centered at x with radius r this as 

compact closure for each r positive closure for all positive r. So this is due to the Heine-Borel 

theorem so we see that Rd is locally compact similarly the end dimensional complex vector 

space this is a locally compact Hausdorff space. And any compact matrix space is locally 

compact and Hausdorff of course this is Hausdorff because this is matrix space. 

 

But since we are assuming compactness then it is also locally compact so locally compact 

Hausdorff spaces enjoy some nice properties and the main one is that there is that we will be 

interested in is that the Riesz representation theorem holds for locally compact Hausdorff. So I 

will abbreviate locally compact Hausdorff by LCH so it holds for locally compact Hausdorff 

spaces X.  

 

Before I go to the statement and proof of phrase representation theorem we will have to recall 

some basic facts about locally compact Hausdorff spaces. Now good reference for this material 



that we shall use is a Folland’s book section 4.5. So in chapter 4 section 4.5 this is on locally 

compact Hausdorff spaces and because we would have time to give all the proof so basic facts 

like Urysohn’s lemma we have to go back and recall for yourself and see the details in this book. 

 


