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Now, for the proof of the third part in which we have to show that there exists a continuous 

function with compact support g complex valued such that the norm of f - g is less than or equal 

to epsilon. So, here we will use the second part. So, by the second part, we can reduce to the case  

of step functions meaning that f is a step function and then further to the case when f is the  

indicator function of a box b. 

So, using the same kind of linearity trick that we used before using triangle inequality. We can 

reduce to this case when f is simply the indicator function of a box. So, then choose an open 

elementary set, open box actually, open box B prime containing B such that the measure of B 

prime is less than or equal to the measure of B plus epsilon which means that the measure of B 

prime - B is less than or equal to epsilon. 

Here, I would also like it to contain the closure of B. So, our box may not be closed but we can 

arrange. So, that B prime contains not only the box but also its closure and then we will still have 



this inequality because the measure of B is the measure of B bar. So, we can assume without loss 

of generality  that  B is  a  closed box and now, we have chose chosen an open box B prime 

containing this closed box B. 

And now, I  am going to  use Urysohn’s  Lemma  which  states  that  there  exists  a  continuous 

function g from R d to the set 0 1. So, it takes values only in the interval 0 1 such that g is equal 

to 1 on the closed set B bar B closure and g = 0 on B prime complement. So, this is about 

separation of closed subs disjoint closed subsets of R d. This is a closed set and this is a closed  

set. 

So, Urysohn’s Lemma states that there exists a continuous function which is one on one of the 

closed sets and zero on the other closed set. So, we are going to use this to determine our g. 

(Refer Slide Time: 04:21)

So, in fact this is the g we want, because the norm of chi B minus this g and the L 1 norm is 

bounded above by the measure of B prime - B bar because otherwise g is 1 on B. Okay. And then 

the only place where g is not equal to 0 is then outside B but then it is again the 0 outside B  

prime. So, since g is g takes the value between 0 and 1 it is less than or equal to 1 times the 

measure of the set on which g is strictly between 0 and 1. 



So, this is what we get and this is less than or equal to epsilon. So, this implies that we have f - g 

is less than or equal to epsilon for any step function f and this implies again by 2 that f - g is less 

than or equal to. So, here this g is not the same as this g. So, let me write g 1 and g 2. So, here 

there exists a continuous function with compact support g prime g 1 such that this happens. And 

here there exists a continuous function with compact support g 2 such that f – g 2 has L 1 norm 

less than or equal to epsilon when f is a general step function either a general L 1 function. 

So,  we have reduced it  to  various  cases  and we have shown this;  all  the three  parts  of  the 

preparatory lemma. 
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And now we come to the proof of Lusin’s theorem. So, let us fix epsilon greater than 0 and by 

our preparatory lemma for each n, we can choose a continuous compactly supported function f n 

from R d to c such that the L 1 norm of f - f n is less than or equal to epsilon by 4 to the power n. 

So, you will see why we have chosen this epsilon by 4 to the power n but this is our function g 

which has chosen. 

We can choose it to be continuous with compact support and our epsilon in this case is epsilon 

(( )) (08:05) by 4 to the power n. So, this g since this depends on n, we have renamed it as f n 

and of course, we would like our f n to converge to f. So, rather than using g’s, we are using f n’s 



and now by Markov’s inequality, we have that the measure of points in R d such that f x - f n x 

less than or equal to sorry greater than or equal to 1 over 2 to the power n. 

So, the measure of this set is less than or equal to. So, this is our lambda here. So, it is less than 

or equal to 1 over lambda times the L 1 norm of the function that you are choosing. So, this is 

nothing but 2 to the power n times the L 1 norm and because we have chosen this L 1 norm to be 

less than or equal to epsilon by 4 to the power n. So, then this is 2 to the power n times epsilon  

by 4 to the power n which is equal to epsilon by 2 to the power n. 

So, now let me denote this set by A n and let A be a union of A n s; n greater than equal to 1. So, 

this means that the measure of A is less than or equal to the sum epsilon by 2 to the power n; n =  

1 to infinity and this is less than or equal to epsilon. 
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So, the measure of A is less than or equal to epsilon and let us see what happens outside of A. 

So, outside this set A. So, if x belongs to A complement; then we have f x - f n x is less than or 

equal to 1 over 2 to the power n for all n greater than or equal to 1. And this implies uniform 

convergence of this function sequence f n converges uniformly to f outside A. And so, this is our 

required set outside of which there is uniform convergence of f n’s to this function f. 



This also implies that f restricted to A complement is continuous because all these f n’s are 

continuous. So, uniform convergence of continuous functions gives you a continuous function. 

So, this means that f when restricted to the complement of this set A is a continuous function 

which proves Luzin’s theorem. 
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Now, we put  an  equivalence  relation  on L 1 functions  as  follows.  So,  we write  for  2  L 1 

functions f and g. We write f is equivalent to g if and only if f agrees with g almost everywhere. 

So,  again  with  respect  to  the  Lebesgue  measure.  So,  we are  on  still  on  R d  and with  this 

equivalence. So, first of all one has to check that this is an equivalence relation. It is quite easy to 

check that this defines and equivalence relation. 

So,  it  is  almost  immediate  from  the  definition  of  the  equal  and  the  relation  that  it  is  an 

equivalence relation. So, now we take the equivalence classes of functions L 1 functions with 

respect to this equivalence relation. And so, we write the equivalence class of f. So, for f in L 1, 

the equivalence class of f is the space of all L 1 functions such that f = g almost everywhere. So, 

rather than using a new notation for this new space of equivalence classes we continue to denote 

the space of equivalence classes f for L 1 functions as L 1 of R d. 



So, rather than using a new notation we still write it as L 1 R d which actually should have been  

written as L 1 R d from our previous notation modulo this equivalence relation. So, rather than 

writing it as modulo always we write, we are going to write it as simply L 1 of R d. 
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Now, with this new space, we have a following lemma that the map d 1 from L 1 R d cross L 1 R 

d to 0 infinity given by d 1 of f comma g. Actually, these are equivalence classes but it is not  

going to make any difference. So, this is the simply the difference of the L 1 norms of f and g.  

So, one has to check that even if you take f prime and g prime in the same equivalence class; you  

will get the same result but this is an obvious statement to make. 

So, we have that first that this is a well-defined function is well defined and it defines a metric on 

L 1 R d. So, by the properties of the metric, we just have to check for positivity and triangle  

inequality and reflectivity. So, I leave it as an exercise again to check that this is true which is 

that this defines a metric on the L 1 functions after you have modulo out by the equivalence 

relation. 

(Refer Slide Time: 16:50)



So, the importance of this metric comes from the next theorem which is that which is called the 

Riesz-Fischer theorem and it says that L 1 R d equipped with this metric d 1 is a complete metric 

space which means that all Cauchy sequences converge. So, we also know that additions of L 1 

functions are in L 1 and scalar multiplication by complex numbers of L 1 functions is also in L 1. 

So, in addition to being just a complete matrix space, we can say that it is a complete. 

It is a complex vector space. So, here L 1 R d is a complex vector space which is complete in the 

L 1 norm. So, this is a complete normed space which means that L 1 R d is a Banach space. So, 

remember that the Banach space is a complete normed space. So, L 1 R d with the L 1 norm is  

then a complete normed space and so, a Banach space. So, this study of Banach spaces is. So, let 

me just remark here that the study of Banach spaces leads us to the field of functional analysis. 

And in particular, the space of L 2 functions on R d which is defined as the space of measurable  

functions, complex measurable functions, measurable such that modulus f square belongs to L 1 

of R d. This is a so called Hilbert space, is a Hilbert space. So, I have not defined the norm here  

but I just want to mention that this L 2 space and a L 2 space is a; has a special importance in the  

space of these kinds of Banach spaces of L P functions. 

So, we can also define L P of R d which is the same class of complex measurable functions such 

that the Pth power. So, here P is a real number greater than 1 and this is a also a Banach space.  



So, all of these L P spaces are Banach spaces but in particular, this space L 2 is a the only one 

which is a Hilbert space. So, all these things are topics that are taken up in the field of functional  

analysis. 

So, we do not have time to go into all these details  but the Riesz-Fischer theorem is a very 

fundamental first result in this area which says that L 1 R d is a Banach space.


