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In the last  lectures  we have seen many different  properties  for the Lebesgue integral  on 

abstract measure spaces. In this lecture we will go back to our initial space, which was the 

Euclidean space, R d with the, with our favorite Lebesgue measure, and we will see that there 

are some more interesting properties that hold in this special case. But let me recall first, what 

we have seen so far for abstract measure spaces. 

So, for abstract measure space, we have seen, of course, we have seen the basic properties of 

the Lebesgue integral, basic properties of measurable functions and Lebesgue integral. We 

have also seen the abstract Egorov’s theorem in the abstract set setting which was based on 

the Littlewood’s third principle which was that a sequence of measurable functions converges 

uniformly outside set of negligible measure. 

And we have also seen various convergence theorems.  So, here we have seen Monotone 

Convergence Theorem Fatou’s lemma and dominated convergence theorem, which are the 

three main pillars of Lebesgue integration theory. So, these all hold for the abstract measure 

space setting. 
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Now let us come back to Littlewood’s three principles that we have seen before. So, the first 

one was that every measurable set is almost open. This was the definition of our notion of 

Lebesgue measurability for sets in R d. And we also had that every measurable set with finite  

measure is  almost  a finite  union of boxes. So,  I  left  it  as an exercise,  which is  not very 

difficult to show that if you have a set of finite measure, then you can approximate it with a  

finite union of boxes. 

So, this was the Littlewood’s first principle and we have already seen this part. We have also 

seen Littlewood’s third principle which says that every point wise convergent sequence of 

measurable  functions  is  almost  uniformly  convergent.  So,  this  was  of  course  Egorov’s 

theorem, which gave a for any sequence of measurable functions converging point wise to 

another function on a set of finite measure. 

Then we can  extract  a  set  of  negligible  measure  outside  of  which  the  convergence  was 

uniform.  So,  this  was  the  Littlewood’s  third  principle.  What  we  have  not  seen  yet  is 

Littlewood’s second principle. So, this we have not seen the second principle which says that  

every L 1 function or absolutely integrable function is almost continuous. Now, note that we 

cannot state this second principle for arbitrary measure spaces because we need notion of 

continuity, which only holds for topological spaces. 

And so this second principle we will state for the Euclidean space, R d. One can also state it 

for more general topological spaces like locally compact Egorov’s  spaces. But we will not 



state it here and we will only state it for R d. So, this is what is called Lusin’s theorem and we 

will see this in today’s lecture. But first, I will like to go back to Egorov’s theorem and state a 

slightly  more  strengthened  version  of  Egorov’s  theorem  when  we  are  dealing  with  the 

Euclidean space with the Lebesgue measure. So, for this let me make a couple of definitions. 
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So,  let  me  define  the  notion  of  local  uniform  convergence  of  functions,  local  uniform 

convergence  in  R d.  Okay,  so  we are  back to  the  case  of  the  Euclidean  space  with  the 

Lebesgue  measure.  Okay,  so  here,  we consider  the  measure  space,  R d  with  the  Sigma 

algebra of Lebesgue measurable sets and the Lebesgue measure. So, let us define what is 

local uniform convergence for R d. So, a sequence of measurable functions. 

When  complex  measurable  functions  f  n  is  said  to  converge  locally  uniformly  to  a 

measureable function f on R d again with values in the complex numbers if f n converges to f  

uniformly on every bounded subset E of R d. So, rather than asking for uniform convergence 

on the entirety of R d, we only ask it for having uniform convergence on every bounded 

subset of R d. 

So, let  us see an example of a sequence of functions converging local uniformly but not 

uniformly. So, first example is if you take f n so let me take on R. If you take f n to be the 

function x over n. Okay, and greater than equal to 1, then f n converges to the function zero  

locally uniformly but not uniformly. So, we see that this is a weaker notion of convergence. 



And I leave it to you as an exercise to check that this convergence is not uniform, but it is 

locally uniform. Similarly if  you take again on R, if  you take the function f x to be the 

exponential function, and write it as the limit of the partial sums of its Taylor series K equal  

to 1 to 0 to n and you take x to the power n over x to the power K sorry over K factorial. 

Then if  you define these as your  f n x, then this  convergence is locally uniform but not 

uniform.  So,  this  convergence  is  locally  uniform,  but  not  uniform.  So,  there  are  many 

interesting  cases  of  functions  sequences  of  functions  converging local  uniformly but  not 

uniformly. So, let me state, a version of Egorov’s theorem, which uses the notion of local  

uniform convergence in R d, and which slightly strengthens our abstract Egorov’s theorem. 
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So, let us look at the statement of Egorov’s theorem for R d. So, it states that if f n is a  

sequence  of  complex measurable  functions  on R d and it  converges  point  wise to  some 

function f point wise almost everywhere in R d. So, here we allow convergence point wise, 

almost  everywhere.  Then given epsilon greater  than 0,  there  exists  a  set  F such that  the 

measure of the set is less than or equal to epsilon. 

And f n converges to f locally uniformly on the complement of F, which is the same as saying 

that f n converges uniformly on f n F complement intersection some bounded set E for every 

bounded  set  E  in  R  d.  So,  let  me  write  another  equivalent  statement  which  is  that  f  n 

converges to f uniformly on F complement intersection B 0 m not for all positive integers, m 

not. 



So, we can check that this last statement is actually equivalent to the middle statement, which 

was for every bounded subset of E and but this is for closed Euclidean balls so this is the 

closed Euclidean balls of radius m not and center 0.  So, we will prove this last statement to 

establish Egorov’s theorem. 
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So, let us look at the proof, but first let me recall what was the abstract version of Egorov’s 

theorem. So, in this case we had that if f n converges to f point wise. So, we did not assume 

point wise almost everywhere but we only assumed point wise convergence on a measurable 

set E such that it has finite measure. Then for any epsilon greater than 0, there exists a set 

subset A epsilon of E, such that the measure of E minus A epsilon is less than or equal to 

epsilon and f n converges to f uniformly on this set A epsilon.

So,  outside this  set  A epsilon  which  has  negligible  measure  inside  E.  We have uniform 

convergence on A epsilon itself. So, we are going to use this abstract version. So, for f n 

converging to f in R d for any positive integer m, we take E to be B 0 m in this above abstract 

version of Egorov’s theorem. Then given epsilon greater than 0, there exists a set A m epsilon 

a subset of B 0 m such that first that the measure of B 0 m minus A m epsilon is less than or 

equal to epsilon. 

And secondly that f n converges to f uniformly on A m epsilon. So, we can apply for any m 

this abstract Egorov’s theorem and we deduce this statement. So, here I would like to take, 

rather than epsilon I would like to take epsilon over 2 to the power m, so that I can use in  



summation trick, as we have done before. So, now let us denote by F m epsilon, this set B 0 

m minus A m epsilon. 

And we take F to be the union of all these F m epsilons. Then of course the measure of F is 

less than or equal to the sum of all the F m epsilons and greater than or equal to 1. And so;  

this is less than or equal to epsilon, because each one is less than or equal to epsilon over 2 to  

the power m. So, we have that this measure of this set F is less than or equal to epsilon. 
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And  now  I  claim  that  for  any  m  not  f  n  converges  to  f  uniformly  on  F  complement 

intersection B 0 m not. So, let us see why this is true. So, we have that B 0 m not intersection 

f complement is the same as B 0 m not intersection with so the complement of F. So, we had 

F itself as the union of these F m epsilons. And so you have to take the complement. So, this  

is B 0 m not intersection with the intersection now of m greater than or equal to 1, F the 

complement of F m epsilon.

But the complement of F m epsilon the intersection is just the same. This intersection is the 

same as the intersection of all A m epsilon. 
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So remember that A m epsilon was the set we chose inside each B 0 m, the closed unit ball B 

0 m and our F epsilon but was precisely the set B 0 m minus A m epsilon. 
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So, the complement of F m epsilon is. So, let me write it down here, F m epsilon complement 

is equal to B 0 m intersection A m epsilon complement and then you have a complement. So, 

then you get B 0 m complement union A m epsilon. So, if you take the intersection of all  

these. So, you should take the intersection over all m. Here also intersection over all m. And 

here also intersection over all m, then the first part intersection m greater than or equal to 1, B 

0 m complement. 

This is nothing but R d. So, you do not get anything extra here, and you will only get the 

intersection of A m epsilon. So, this is why we can write this last statement that B 0 m 0  



intersection F complement is the same as B 0 m 0 intersection with the intersection of all A m 

epsilons. But now this set is a subset of B 0 m 0 intersection A m 0 epsilon in particular 

because we have an intersection over all m. 

And this is nothing but A m 0 epsilon because this is a subset, A m 0 epsilon is a subset of B 

0 m 0 by construction. So, on A m 0 epsilon, we have by construction that f n converges to f 

uniformly. And so this implies that f n converges to f uniformly on B 0 m 0 intersection F 

complement, since it converges uniformly on A m 0 epsilon. So, we see that we have local 

uniform convergence in R d when you have a sequence of functions converging point wise 

almost everywhere. 
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So, here I missed one thing, which is that our function converges point wise everywhere point 

wise almost everywhere. Here we have point wise almost everywhere convergence but here 

we need point wise everywhere convergence. But this is not an issue because we can modify 

this point wise convergence states that it converges everywhere when the modification is on a 

set of measure 0. And then we can add this set to our set F at the end, so that we still have a  

set of measure less than or equal to epsilon. 
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So, note that if f n converges to f point wise almost everywhere, then after modification on a 

set let us call it E of measure 0. Without loss of generality, we can assume that f n converges  

to f point wise everywhere rather than almost everywhere. And in the end, we can take the 

union of F union this set of measure 0. And this set, still has measure less than or equal to 

epsilon. So, a modification on a set of measure 0 does not affect our statement of Egorov’s 

theorem.


