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Now  we  come  to  an  extremely  important  property  of  the  Lebesgue  integral,  which  is  the 

monotone convergence theorem and it  says  that  if  fn  is  a  sequence of  unsigned measurable 

functions such that fn is less than or equal to fn + 1. So it is an increasing sequence or non-

decreasing  sequence  of  unsigned measurable  functions  and f  is  the  pointwise  limit  of  these 

functions fn, then the integral of f is equal to the limit of the integrals of the fn’s.

So note that, on the left hand side we have the integral of the limit n tends to infinity, fn d mu  

and on the right hand side, we have the limit n tends to infinity integral fn d mu. So one can view 

it as the interchange of limit and integral signs, which is allowed when you have a sequence of 

non-decreasing unsigned measurable functions converging pointwise to a function f. So this is an 

interchange  of  limits  and  integration  signs.  So  let  us  look  at  the  proof  for  this  monotone 

convergence theorem.
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So first note that due to monotonicity,  we have that:  since fn is less than or equal to f,  this  

implies that integral fn d mu is less than or equal to integral xf d mu. So of course if fn is a non-

decreasing sequence converging to a function f, then the limit bounds all the fns. So we have fn 

is less than or equal to f and this implies by the monotonicity property that the integrals also 

satisfy this inequality. Now this sequence of integrals fn d mu is a non-decreasing sequence.

Since we also have that fn d mu is less than or equal to fn + 1 xd mu; of real numbers of course, 

of positive real numbers,  non-negative real numbers.  So the limit  exists. So limit  n tends to 

infinity integral xfn d mu exists in the extended real numbers, which so, it could possibly be plus 

infinity as well, but since it is a non-decreasing sequence, the limit must exist. Whether it is a 

finite real number or plus infinity.

So this implies that the limit of n tends to infinity integral xfn d mu is also bounded above by f d  

mu. So now it suffices to prove the reverse inequality. So to show that integral xf d mu is less 

than or equal to the limit n tends to infinity d fn mu.
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So to  show this  reverse  inequality,  we will  use  the  following  lemma,  which  is  the  upward 

monotone  convergence  theorem for  arbitrary measure  spaces  and it  says  that  if  xd  mu is  a 

measure space and En, n = 1 to infinity, is a non-decreasing sequence of measurable sets in x, 

then the limit of n tends to infinity measure of mu En is precisely equal to the measure of the 

union n = 1 to infinity En.

So we have seen this result for the Lebesgue measures, but just check here, check that the proof 

that we used for Lebesgue measure works word by word in this abstract setting as well. So check 

that  the  proof  for  Lebesgue  measure  on  Rd  works  word  by  word.  So  it  is  almost  trivial 

generalization for the upward monotone convergence theorem for the Lebesgue measure. So we 

will use and we will also use the fact that we have proved.

Recall that for a fixed simple function s the map from E to for a measurable set E and B, which 

are signs, this set E the real number given by the simple integral over E. So we have defined the 

simple integral over any measurable set E and so we can associate to any measurable set E, this 

number and this is a measure on B. So I left it as an exercise before and we are going to use these 

two results.



The first is that the upward monotone convergence theorem holds and the second is that this 

assignment of the simple integral or fixed simple function s to any measurable set; this gives you 

a measure on the sigma algebra B.
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So let us see how to prove the reverse inequality with these two properties. So we have to show 

that the integral of f d mu is less than or equal to the integral of fn d mu limit n tends to infinity. 

So let us fix a simple function s on x such that we have 0 less than or equal to s less than or equal 

to f. So we are going to use the fact that the Lebesgue integral of f is defined using simple  

functions, which are bounded above pointwise by f.

So let us fix any such simple function s, which is bounded above by f. Also, fix a constant alpha, 

which is strictly between 0 and 1. Now if you define En as the set of points in x, such that fnx is  

greater than or equal to alpha times sx. Now this is a measurable set in x and we also have that  

En is a subset of En + 1, since fn is less than or equal to fn + 1. So this is automatic. So this is the 

first property that En satisfies and the second property is that the union of all these En, n = 1 to 

infinity, this is actually equal to the whole space x.

And this is due to the fact that fn converges to f as n tends to infinity, because if you see on the 

positive or non-negative real line, 0 to infinity,  so let us say that fx is some finite value and 

because we have chosen s to be less than or equal to f and alpha to be strictly less than 1, so  



alpha sx will lie strictly below fx and so using the property of the limit, we can find fn x lie  

between these two points for n large enough, because fn converges pointwise to f. So this implies 

that the union of all these E n s is the whole space x.
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Now let mu s of E denote the measure obtained by associating with the measurable set E, thus 

integral of sd mu. So if you denote mu s, the measure, then we have that mu s of En as tends to 

infinity converges to mu s of x as using upward monotone convergence theorem that we just 

saw. This is because x is the union of this Ens. So therefore, we have first that the integral over x 

of fn d mu is greater than or equal to integral over x of fn chi E n d mu.

This  is  again  because  fn  chi  En  is  pointwise  bounded  above  by  fn,  so  we  have  just  used 

monotonicity and then on this set En, we have that fn is greater than or equal to alpha times sx. 

So this is greater than or equal to alpha times sx or s chi E n d mu. Now this is a simple integral,  

because we have in our simple function s chi En, but note that chi A chi B, if you take the 

indicative functions of two sides A and B, and you multiply them, then this is the indicative 

function of the intersection.

So this implies that the integral alpha s chi En over xd mu is nothing but alpha of the integral s, 

simple integral over the set En, because when you are considering the simple integral over a 

measurable set, you just take intersections and so using this fact, we can easily prove that. When 



you put chi En and multiply with s, you get the simple integral over En itself. So now this is  

nothing but alpha times mu s of En and now we can take the limit on the right hand side.
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This implies that integral fn x d mu is greater than or equal to alpha times mu s of En. Now take 

the limit on both sides, limit as n tends to infinity on both sides, we get that the limit n tends to 

infinity xfn d mu is greater than or equal to alpha times limit n tends to infinity mu s En, but we 

have seen that this is nothing but alpha times mu s of the whole space x and this can be rewritten 

as alpha times x the simple integral of sd mu over the whole space x.

So now note that this is valid. This inequality is valid for all alpha strictly between 0 and 1 and 

for all simple functions s such that 0 less than or equal to s, less than or equal to f. So first, we 

can take the limit as alpha goes to the value 1, so this implies that the limit of n tends to infinity 

xfn d mu integral is greater than or equal to the value at alpha equal to 1, which is nothing but  

this simple integral and so therefore, since this is true for all s, we can also take the supremum on 

the right hand side of the inequality.
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So this  implies  that the limit  as n tends to infinity xfn d mu is greater  than or equal to the 

supremum over the set of such simple functions, which are pointwise bounded by f and you take 

the simple integral of s and this is nothing but integral of f d mu. So we have shown the reverse 

inequality. This implies that integral of fd mu is equal to the limit n tends to infinity of fn d mu.

Now the monotone convergence theorem is a fundamental result in Lebesgue measure theory of 

integration and we will use it over and over again to derive many more interesting results as we 

go along, but the first corollary that interests us is the following. So if sn is the sequence of 

simple functions increasing to measurable function f. So all of these are unsigned and here also 

unsigned, then the integral of fd mu is equal to the limit of the s tends to infinity of the integrals 

of sn d mu.

And  we  have  already  seen  that  such  as  increasing  sequence  always  exist  for  an  unsigned 

measurable  function.  Therefore,  we always  have  atleast  one  sequence  which  we can  use  to 

evaluate  such  an  integral.  So  this  gives  the  monotone  convergence  theorem  gives  you  an 

immediate way to compute the Lebesgue integral in terms of increasing sequences of simple 

functions or even unsigned measurable functions.
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So the  next  result  is  called  Tonelli’s  theorem,  which  is  about  interchange of  infinite  series, 

infinite sum and integral. So this is about interchange of integral and infinite sum. So it says that 

if fn is a sequence of unsigned measurable functions, then the integral of the series given by 

summing  up  all  the  fn  d  mu  is  equal  to  the  infinite  sum  of  the  individual  term  by  term 

integration.  So  this  is  about  allowing  term by term integration,  just  by  taking  sequence  of 

unsigned measurable functions.

So let us see the proof. So first we have to show that this holds for finitely many functions fn. So 

we can start with two functions. So let f1, f2 be unsigned measurable functions and because they 

are unsigned measurable, there exists an increasing sequences of simple functions phi k, k = 1 to 

infinity and psi k, k = 1 to infinity such that the limit as k tends to infinity of the phi k = f1 and 

the limit as k tends to infinity of this psi k = f2.

So this implies that the limit as k tends to infinity of the sum psi k + phi k = f1 + f2. So now if 

you take the integral of the sum f1 + f2 d mu, then this is the limit as k tends to infinity of phi k + 

psi k. This is by the monotone convergence theorem, MCT in short and we have seen in the 

corollary that we can take any sequence of simple functions converging from below increasing 

sequence converging from below and then we will have this formula.



But now this is a simple integral, so we can use the linearity property for the simple integral to 

write this as the sum of phi kd mu + psi kd mu and then we can take the limit inside, because 

both limits exist. So this is equal to nothing but integral of f1d mu + f2d mu again by using 

MCT, because f1 d mu is the limit of the first term, integral of phi kd mu and the integral of f2 d 

mu is the limit of the integrals of psi k.

We see that the linearity property holds, this is the linearity property for Lebesgue integrals. We 

had only proved till now the linearity with respect to scalar multiplication, but now using MCT, 

we have also proved that linear with respect to addition of two functions.
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So this is a nice result and by induction we have for any n greater than or equal to 1. We have  

that N, here that the sum of n = 1 to N fn d mu is equal to the sum n = 1 to N of the individual  

integrals fn d mu. So now we can take the limit on both sides as N goes to infinity on both sides.  

So we get the limit as n tends to infinity x n = 1 to N fn d mu and this is equal to the limit as N 

tends to infinity n = 1 to N, integral over x of fn.

The right hand side is already something we want which is n = 1 to infinity integral fn d mu. On 

the other hand, we can use the MCT implies that the limit as n tends to infinity of this integrals 

sum n = 1 to N fn d mu is equal to the limit as n tends to infinity taken inside the integral n = 1 to  

N fn d mu, because since this sequence gN, which is the sum over n = 1 to N fn is an increasing  



sequence  of  measurable  functions  converging  to  the  series  n  = 1  to  infinity  fn.  So  we can 

interchange  the  limits  in  this  case  using  the  monotone  convergence  theorem.  So  from first 

equation and second equation, we get the result.
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Which is that the integral of n = 1 to infinity fn d mu, the sum is equal to the sum n = 1 to  

infinity of the individual integrals of fn. So this is the Tonelli’s theorem. Note that it was only 

allowed because all these fn are unsigned measurable functions, which makes this patched sums 

a non-decreasing sequence, so that we can apply the monotone convergence theorem. Now let 

me remark here that easy examples can show the failure of the monotone convergence theorem, 

if you do not assume that we have an increasing sequence of functions.

If we do not assume that the sequence of functions fn is increasing or non-decreasing. So let us 

seen an example. So we can take fn to be, so this is a rather a non-example. So we can take fn to 

be the indicative function for the interval n, n + 1. So here x is R and you can take B to be the  

Lebesgue sigma algebra and mu to be the Lebesgue measure. So for all n greater than or equal to 

1, we can take the indicative function for the interval n, n + 1.

So when you take the limit, so first of all this is not an increasing sequence and when you take 

the limit, as n goes to infinity of fn, you get the 0 function, because pointwise this function fn we 

can say that fn escape to infinity horizontally. So this is a horizontal escape to infinity and there 



are other escapes to infinity that we will see later. So in this case, the pointwise limit is 0 and if  

you take the integral of fn, well it is integral over R of dm fn dm.

So this is nothing but the measure of the interval that we have chosen, which is n, n + 1 and this 

is nothing but 1. So the limit is also equal to 1. On the other hand, if you take the integral of the  

limit of fn dm over R, then this is nothing but 0, because this is the 0 function. So we see that the  

monotone convergence theorem fails when we have this escape to infinity problems and it does 

not satisfy the hypothesis of the monotone convergence theorem.
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Nevertheless,  we still  have a  result,  which is  called  Fatou’s  lemma,  but  I  will  write  it  as a 

theorem. This is called Fatou’s lemma,  which is that if fn, n greater than or equal to 1 is a  

sequence  of  unsigned  measurable  functions.  We  do  not  need  to  assume  that  it  converges 

anywhere. Just we have a sequence of unsigned measurable function, then the integral over x of 

the lim inf as n tends to infinity of this fn d mu is less than or equal to the lim inf as n tends to 

infinity of the individual terms integral fn d mu.

Now  let  us  see  the  proof  of  Fatou’s  lemma,  for  which  we  will  again  use  the  monotone 

convergence theorem. So if we let for any k greater than or equal to 1, let us say gk to be the 

infimum of all the fn for n greater than or equal to k. So of course gk is less than or equal to fn  

for all n greater than or equal to k by definition and so the integral of gk d mu is less than or 



equal to the integral of fn d mu for all n greater than or equal to k, which means that the integral 

of gk d mu is less than or equal to the infimum over the set n greater than or equal to k of these  

integrals fn d mu.
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On the other hand, we have that gk is less than or equal to gk + 1, because we are taking an 

infimum over a larger set for gk and so gk is less than or equal to gk + 1 and it increases, it  

converges and the limit of gk as k goes to infinity is equal to the limit as k goes to infinity,  

infimum of n greater than or equal to k fn and this is nothing but the lim inf by definition of this 

fn.

So by the monotone convergence theorem, we have the limit as k tends to infinity of the gk, the 

integrals is equal to the limit as k tends to infinity of the individual gk and this is nothing but on 

the left hand side we have lim inf fn d mu and on the right hand side, we have the limit as k tends 

to infinity gk d mu, but this is less than or equal to the limit as k tends to infinity, the infimum of  

n greater than or equal to k, fn d mu. This is what we have proved right here.

So we have used this inequality here by monotonicity, we have that the limit for the first term 

and for the left hand inequality is less than or equal to the limit for the infimum over n greater  

than or equal to k of the integrals fn and this is again nothing but the lim inf of the numbers. So 



these are real numbers and we have by definition of the lim inf, this is nothing but this k goes to  

infinity and then infimum n greater than equal to k.

So we have established Fatou’s lemma which is the integral of the lim inf of fn is less than or 

equal to the lim inf of the integrals of fn and this holds whether or not we assume that fn is a 

monotone sequence or not.


