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Now we come to one of the most important concepts in measure theory which is that of 

Lebesgue  integral  of  an  unsigned  measurable  function.  So,  as  I  said  before  Lebesgue 

developed the theory of measures and integrals so that one could have an advantage over 

Riemann integration and which could be applied to arbitrary sets as well. So, in this lecture 

we will look at the definition of the Lebesgue integral for unsigned measurable functions and 

then we will generalize this definition first to real value functions and then to complex value 

measurable functions.

So let us look at the definition so first recall that we have defined define the simple Lebesgue 

integral for simple functions simple measurable functions let us say s from a set so we will 

take a non-negative simple measurable function then it is of the form it is a finite sum of 

scalar  values  alpha i  multiplied  by the  indicator  functions  of  E is  which are  measurable 

subsets of this measurable space x.

So, then the simple Lebesgue integral s d mu is nothing but the sum i = 1 to n alpha i mu of E 

i so here x v mu is a measure space and so we have defined the simple Lebesgue integral. 



Now we also have that  any non-negative or rather unsigned we have defined what is  an 

unsigned  measurable  function  f  from x  to  0  infinity  with  plus  infinity  included  can  be 

approximated from below by an increasing sequence of non-negative simple functions.

So, we have sn a sequence of simple functions says that sn increases to f point wise which 

means that it is a non-decreasing sequence of simple functions and the limit point wise limit 

of this sequence is precisely f. So, we know we have defined the Lebesgue integral for simple 

functions  and  we  know  that  there  always  exists  a  sequence  of  simple  functions  that 

convergence from below to any measurable unsigned measurable function f.
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So, it makes sense to define the Lebesgue integral of an unsigned simple function so let so x 

B mu is  a  measure  space  and f  be  an unsigned measurable  function  then  we define  the 

Lebesgue  integral  x  f  d  mu as  follows.  So,  this  integral  of  f  d  mu  is  by  definition  the 

supremum  of  simple  functions  which  are  point  wise  bounded  above  by  the  measurable 

function f and you take the simple integral of s.

So, it is the supremum of the simple integrals  of simple functions f s which are bounded 

above point wise by f. So, note that this is the equivalent or rather the generalization of the 

lower Darboux integral where we took for a bounded function on a compact interval in r we 

took the  piecewise  constant  functions  which  were  bounded above by f  and we took the 

piecewise constant Riemann Darboux integral of those functions.



So, this  is  a generalization of the lower Riemann Darboux integral.  So now the question 

arises why we take the lower one and we do not define the first the lower and upper and when 

they two when the those two agree then we say that the Lebesgue integral exists as we did for 

Riemann integration. So, we have to say some words about the justification for using the 

lower integral as our definition for Lebesgue integral using the lower integral. So first is that 

if f is an unbounded function then there are no simple functions s such that f is bounded 

above by s. So, we can simply view it for example on r. 
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So, we have the real i let us say that we define our function only on the positive part and say 

that f is bounded unbounded near 0. So, this is our fx this is unbounded near zero so it goes to 

plus infinity near 0. So, if this is the case then any simple function you take which you want 

to be higher than f pointwise. So, suppose that we take here this value so remember that we 

have to take simple functions which are defined over all of r and then it has to be pointwise 

bounded above everywhere it should bound f everywhere point wise. 

So, if you take for example this value here and then after some partition you take this value  

here and this value here and so on. But since we are only allowed finitely many we have to  

stop somewhere and for this reason the condition f <= s is violated. So we can try to define it 

for finitely many pieces of the real line measurable pieces but since we are only allowed to 

have finitely many at some point we will run out of space and some part of the unbounded 

part of f will remain uncovered or unbounded by this simple function s which we need to be 

higher than f for every value of x. 



So,  in  this  region we cannot  have  that  f  is  bounded above by s  so there  are  no simple  

functions even in the case of the real line and f unbounded near 0. We do not have any simple 

functions which are which bound above this  point wise this function f.  So, we have that 

unbounded functions if we wanted to define so if we wanted to define the upper Lebesgue 

integral which we can define for example as the infimum of f <= s as simple of the simple 

integrals of these simple functions s then this infimum then this is an empty set and you will 

get simply 0. 

So, it is does not give you anything interesting on the other hand so in this case we see that 

the upper Lebesgue integral does not make sense. So, in this case so if f is unbounded so let  

me write it here. So, if f is unbounded the upper integral is not interesting in the sense that it  

only gives you value o. So, that is one reason why we take only the lower Lebesgue integral 

to define the our Lebesgue integral for unsigned measurable functions.

The other reason so this was our first reason that if f is unbounded then there are no simple 

functions f < = s. In the second reason we can also say that even if f is bounded even if f is  

bounded but takes a positive value on a set of measure infinity then also the upper integral is 

not interesting. So again, we can see an example.
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So now we allow bounded functions but it has to take a strictly positive value on a set of  

infinite measures. So, for example we can take this function decreasing to 0 for example we 

can take fx = e to the power minus x we know that this can be integrated over the positive 



real line but if you want to define it via the upper Lebesgue integral then again because we 

have only finitely many choices for the simple functions.

So, we can define it like this here like this here like this here and so on but at some point, you 

will have you have we have to cover an infinite portion of the real line with a finite value. So 

then if you write this function as s we will have s is bounded below by f everywhere but we 

have that the simple integral of s over r for the Lebesgue measure here is going to be plus 

infinity because this measure of this part is plus infinity.

So even if you have bounded functions but which takes a strictly positive value over a set of 

infinite  measure  then  we  see  that  the  upper  integral  is  plus  infinity.  So  again  it  is  not 

interesting so we see that the lower one makes sense always even if it is even if your function 

is unbounded or if it is bounded but with strictly positive values over a set of infinite measure 

because the of the fact that here if you want to take a lower integral then we have always that  

this 0 value is allowed for when you start to approximate f from below so because our 0 value 

is accessible here this function was strictly positive.

So, when you approximate from above 0 is not accessible but when you approximate from 

below 0 is accessible. So, when you have a set of infinite measure then you can just put a 0 

for the simple function and then your lower Lebesgue integral will still give you finite values. 

So, this is these are the couple of reasons why our definition for the Lebesgue integral is only 

the lower Lebesgue integral and not the upper Lebesgue integral.
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So now we look at  some immediate basic properties for the Lebesgue integral which are 

immediate from the definition of how we have stated the definition for the Lebesgue integral. 

The first one is monotonicity which says that if f and g are unsigned measurable functions 

and f is pointwise bounded by g then the Lebesgue integral of f is less than or equal to the 

Lebesgue integral of g.

So,  this  is  the  monotonicity  property  the  second  one  is  linearity  with  respect  to  scalar 

multiplication.  So,  we have  seen that  the  simple  integral  is  linear  with  respect  to  scalar 

multiplication and of course this also holds for the Lebesgue integral for unsigned measurable 

functions. So, if alpha is a constant is a positive constant and f is an unsigned measurable 

function then the integral of alpha f d mu is equal to alpha times the integral of f d mu.

And the third is the agreement with the simple Lebesgue integral which says that if f is a 

simple unsigned measurable function then the Lebesgue integral as we have defined it right 

now is equal to the simple. So, the second one is the simple Lebesgue integral on the right-

hand side and on the left-hand side we have the Lebesgue integral as we have defined using 

supremum of simple functions approaching from below.

So, these two agree so I will leave all three as an exercise. So, these are left as an exercise. 

So, you should just check from the very definition that we can deduce all three properties 

stated here. 


