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So now we have built up enough theory of Lebesgue measurable sets so that now we can 

come to the main and the most important aspect of Lebesgue’s theory of Lebesgue’s measure 

theory  which  is  the  theory  of  integration.  So,  as  I  mentioned  before  one  of  the  main 

motivations  for  developing  the  theory  of  measures  was  because  Riemann’s  theory  of 

integration was not sufficient and it had some drawbacks and one of the main motivations for 

the Lebesgue’s theory of integration and subsequently the Lebesgue’s measure theory was to 

overcome these drawbacks in Lebesgue’s and Riemann’s theory of integration.

So, let me recall  some drawbacks of Riemann’s theory of integration some drawbacks of 

Riemann’s theory of integration. So, the first point is that of course here I am only talking on 

for the Riemann’s integrals on the real line R. So, first of all it is that a function so Riemann’s 

theory Riemann’s integration is valid only for bounded functions on compact sets or bounded 

sets of R.

So, if the function is unbounded then proper the theory of ordinary Riemann integrals is not 

sufficient and then one has to pass to what is called an improper Riemann integral but for 



ordinary Riemann integration only bounded functions are allowed and that to with support on 

bounded sets on R. So, there are of the form f from defined on finite interval a, b to R or c.  

So, this is one of the first drawbacks that it only allows for bounded functions defined on 

compact sets of R.

Secondly, we have seen that since E is Jordan measurable is equal into saying that chi E is 

Riemann integral. So, we prove this statement this is an if and only if condition. So, this  

means that even if f is bounded there exists many functions whose Riemann integral does not 

exist. Son for example take any non-Jordan measurable set E and take chi E. So, we have 

seen many examples of bounded sets which are not Jordan measurable.

So, the modified canter set was one example then the union of small enough intervals over 

the rationales this was another example of a boundary open set.  So, these are not Jordan 

measurable therefore their integrative functions will not be Reimann integral. So, Riemann 

integration even if you take boundary functions then also the class of bounded functions for 

which it is Riemann integral integrable is not large enough.
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If fn say R to R is a sequence of Reimann integrable functions, then the point was limit so let 

us suppose that converging to converging point-wise. So here let me put a, b to R so we have 

fixed a finite interval on which all these references are defined so converging point-wise to f 

then f  may not  be Reimann integral.  So,  for  example  if  you  take  an enumeration  of  the 

rationals qi i from 1 to infinity and inside let us say 0, 1 and take An to be the union of to be 

the set of the first n rationals in.



So let me denote this as A where q = this enumeration of all the rational numbers so you are 

only considering the rational numbers inside 0, 1. So if you take An to be the rationales inside 

A inside 0,1 but only finitely many then chi n converges to chi A and this is so each of these 

are  is  Riemann  integrable  because Riemann  integrable  because  it  has  only finitely many 

points of discontinuity.

Since chi An has finitely many points of discontinuity. On the other hand, if you take, there 

indicate the function for the all the rationales in 0, 1 this is not integrable this is not Reimann 

integrable because it is a this is a no where continuous function it is not continuous at any 

point  in  0,1 so we see that  point-wise limit  of  bounded Riemann integral  functions  may 

converge to a function which is not Reimann integral. 

So,  this  is  another  drawback  for  Reimann’s  theory  and  last  but  also  not  least  is  that 

Riemann’s  theory  Riemann  integration  even if  you  consider  improper  Riemann  integrals 

which do allow some unbounded functions Riemann integration only works on R or let us say 

Rn so it only works on Euclidean Space Rn.

So, we see that when we have constructed an abstract theory of measures, we can also define  

integration on an abstract set abstract measurable space and then we will have a very nice 

theory of integration which more or less will address almost all these shortcomings that we 

have listed here.
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So first one is that it is valid only for bounded functions on compact sets second is that even 

if it is bounded it may not be Riemann integrable and third is that a sequence of Riemann 

integral  functions may converge to a function which is  not Riemann integral.  So,  and of 

course the last we have seen that it only restricts the theory to Rn and what we will propose 

the Lebesgue theory of integration which will  work not only for any abstract  measurable 

space.

But also, most of these issues that we face here will be addressed of course giving some 

additional constraints but nevertheless they allow for a much larger class of functions to be 

integrated.
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So, let us come to Lebesgue’s theory of integration the Lebesgue integrals. So first we will 

define integration integrals for simple functions simple measurable functions. So, whenever I 

say simple functions, I will assume that it is measurable and then we will define integrals for 

unsigned  measurable  functions  and  then  we  define  integrals  for  real  measurable  and 

subsequently complex measurable functions. 

So, we will follow this step so this is first this is second and this is the third step in which we 

will step by step define the notion of a Lebesgue integral. So, let us start with integrals for 

simple functions. 
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So, the idea here will  be to mimic the construction for the piece wise constant Riemann 

Darboux integral  idea  is  to  mimic  the  construction  for  the  piece-wise  constant  Riemann 

Darboux integral which takes piece-wise constant function g. So, if g is a piecewise constant 

function defined on a box B in Rd then there exists a partition Bi i = 1 to n finite partition of 

B into boxes such that g can be written as alpha i chi of Bi I = 1 to n.

So, this was a piecewise constant function and the piece-wise constant Riemann Darboux 

integral on Rdg dm is by definition then i = 1 to n alpha i the measure of Bi. So, this was the 

definition of that piecewise constant Riemann Darboux integral which is defined like this. So, 

we will now allow first of all we will take a simple function which will be of the form alpha I  

chi of ai Ai’s may not be boxes but they will be definitely Lebesgue measurable functions 

and then we can use a similar formula to define what is called the Lebesgue integral.
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So, this is the idea for simply how to we make the piece-wise constant Riemann Darboux 

integral. So, first let me fix i will work on fix measure space x, B, mu and take now a simple 

function an unsigned simple function. So, s is a map from x to 0 + infinity but not including + 

infinity of the form s = sum i = 1 to n so it is a finite sum of a finite linear combination of 

indicative  functions  Ai measurable  and alpha i  belongs to  the positive non negative  real 

numbers for each I 1, 2 up to n. 

And so, this is it simple function so then we can define the simple Lebesgue integral of a 

simple function. So, let s be as above then the simple Lebesgue integral denoted by a integral 

sign over x but with a cross sign s d mu is defined to be the sum i = 1 to n alpha i mu of Ai 

and this is by definition this simple Lebesgue integral for the simple function s. So, here note 

that alpha i can be 0 and mu of Ai can be plus infinity because we are no longer working on  

boxes.

So the measures can be can be plus infinity and it can be 0 s can take the value 0 on a  

measurable set of measure plus infinity in which case we take the convention 0 times plus 

infinity is 0 so that when the simple function takes the value 0 on a measurable set of infinite 

measure it does not contribute to this some alpha i mu Ai so it will be 0. So, this is the 

definition for the simple function.
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We can also define this integral s E d mu for any measurable subset of x E of x and this is 

defined as so in the first instance we defined it for the whole space x but it is simply a very 

easy modification to define it for over a any measurable subset E of x and here you take the 

sum alpha i mu of Ai intersection E again with the same condition convention that 0 times 

plus infinity is 0.

So now let us look at some basic properties for the simple Lebesgue integral. So, we take 2 

simple functions s and R they are simply measuring functions on some measure space x d mu 

and we fix a measurable subset E of x then the first 2 properties is the linearity property. So, 

if  alpha  is  a  scalar  and  non-negative  scalar  then  the  function  the  integral  of  the  simple 

function alpha s equal to alpha times the simple integral of s.

So, this is very easy and I leave it as an exercise for you to do. The second one is that the 

simple integral of the sum of 2 simple functions which is again a simple function so this is a 

simple function is equal to the sum of the simple function simple integrals of s and R. So, this 

is these 2 the first 2 properties taken together give you the linearity property for the simple 

Lebesgue integral. 

The third one is monotonicity which says that if s is point-wise bounded by R then the simple 

Lebesgue integral of s is bounded by simple Lebesgue integral of R. So this is also left as an 

exercise because it is quite easy and lastly the measure where the map this is the measure 

property which the map which assigns to any measurable set E there is simple Lebesgue 

integral s for a fixed central function s this is this defines a measure on B which means that it  



is accountably edited measure on B. So also, I will leave this the last property as an exercise 

so I will just prove this second property here.
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And let us look at that proof for 2 which is that if so, this is what we have to show that the 

simple integral of x + R d mu = s d mu plus simple integral of R d mu. So, let us suppose that 

s is written as alpha i chi of Ai i = 1 to n and R is a simple function j 1 to m different maybe 

different from this n for defined for s and we can have beta I chi of Bj. So, beta j chi of Bj. So 

these are the representations of simple functions with respect to measurable functions Ai’s 

and Bj’s scalars non-negative scalars alpha i’s and beta j’s note that this  collection Ai is 

designed collection and alpha i is not equal to alpha j if i is not equal to j. 

So these are distinct values and similarly for beta Bj’s and beta  j.  So,  we have that this 

collection of disjoined unions of Ai’s and Bj’s is given by the whole space x. So, x can be 

written as the union of Ai’s and also the union of Bj’s which means that for each fixed i for  

each i in 1, 2 up to n Ai is the union j = 1 to n Ai intersection Bj. So, we can decompose each  

Ai in this way and similarly for each j fixed j in 1, 2 up to n we have Bj is the union of i = 1  

to n Bj intersection Ai. 

So, the first one for example implies that chi of Ai is the sum j = 1 to n chi of Ai intersection 

Bj and the second one implies that chi of Bj is similarly i = 1 to n chi of Ai intersection Bj. 

So, let us see what is the integral of s + r and what is the RHS outages which is the sum of  

integrals of s and R.
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Now let us try to compute the LHS so this is the simple Lebesgue integral or s + r and note 

that s + r is also a simple function and what we need is a representation of so let me say if s + 

R is represented as a sum k = 1 to l gamma k chi of c k where the range of s + r is gamma 1  

gamma 2 and so on up to gamma l and ck is equal to the set x set of points in x such that s +  

Rx = gamma k.

So now since we know the ranges of s and r individually the set of gamma case is easy to 

compute which is simply the set alpha 1 + beta 1 + then alpha 1 + beta 2 + alpha 1 sorry is 

that commas alpha 1 + beta m and then alpha 2 + beta 1 alpha 2 + beta 2 and so on alpha 2 +  

beta m and so on then we have alpha n + beta 1 alpha n + beta 2 and so on to alpha n + beta n. 

So, these are the possible ranges for the for the function s + r and so let gamma k = alpha i + 

beta j. 

So of course, one has to reorder this set up to 1 to l and then we have to write gamma k for  

alpha i + beta j. So, gamma k + alpha i + beta j so and ck is exactly the same as set s inverse 

alpha i + s inverse at alpha I intersection r inverse beta j which is nothing but Ai intersection  

Bj. So, the integral of s + r d mu is going to be equal to the double sum I j. So i j belonging to 

the set 1, 2 up to n cross 1, 2 up to m then you have alpha i + beta j and then you have the 

measure new of Ai intersection Bj intersection E and this is nothing but the double some i 

from 1 to n j from 1 to n alpha i + beta j and then you have the measure Ai intersection Bj  

intersection E. So, this is the RHS the LHS which is the LHS.
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And now for the RHS we have individually s d mu + r d mu which is nothing but the sum i =  

1 to n alpha i mu Ai + j = 1 to m beta j mu Bj and now we are going to use the finite relativity  

property alpha i mu Ai can be written as j = 1 to m mu Ai intersection Bj + j = 1 to m beta j 

and then again you can write i = 1 to n mu of Bj intersection Ai. So, now we can collect the  

terms so both are intersected with E here also here.

So, everywhere you have intersection further intersection with E and so we can collect the 

terms with Ai and Bj so you will get again the double sum 1 to m alpha i + beta j and then 

you have mu of Ai intersection Bj intersection E. So, from the first line to the second line we 

used finite additivity of the measure mu and so we see that this is also equal to the LHS and 

so we are done. So, this establishes the first few basic properties of the simple Lebesgue 

integral. 


