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Now let us come to the next three properties. The first one says that if you have two unsigned or 

complex  measurable  functions  f  and  g,  so  we have  either  unsigned measurable  or  complex 

measurable,  then  the  sum and  the  pointwise  term and  product  are  unsigned  measurable  or 

complex measurable. So because complex measurability depends on real measurability, which 

further depends on unsigned measurability.

So it suffices to show their unsigned measurable case and the complex measurable case will 

follow and here we can simply write. For example, f + g and if you take the set f + g greater than 

some constant lambda,  then this can be written as the union of the sets f greater than some 

number q intersection g, then should be greater than lambda – q and if you take q to be the 

rational inside the extended real, then you get a countable union and each one of them of these 

sets are measurable.



So these  are  all  measurable  sets  because  f  and g  are  measurable  and so  therefore  f  +  g  is 

measurable. Now for the second part for the pointwise product, first let us suppose that f = g, so 

if  you  can  prove  that  f  square  is  measurable,  then  the  pointwise  product  of  f  with  itself  is 

measurable, then we can deduce that fg is measurable. I will show you how. So first suppose that 

f = g and then we can write f square greater than lambda.

The set is equal to f greater than square root of lambda, because lambda is a non-negative real 

number,  the square root is  unambiguously defined.  So this  is  measurable and so f  square is 

measurable and now you can write fg as you can use the following formula f + g whole square 

minus f – g whole square and so first that the sum is measurable, then the square is measurable  

and the sum again this is the sum of two, now no longer unsigned.

But nevertheless, you can view it as a complex valued measurable function and then you can 

take the square and so these are all measurable and so the whole thing is measurable. Of course, 

the multiplication by a scalar does not affect measurability as well. So this is measurable. So this 

is the sixth part, this is 7 and this is 8 and now if you take the seventh one. For example, if you 

take the supremum, so you can take g greater than lambda as the union n >= 1 and then you can 

take fn greater than lambda.

So the supremum greater than lambda means that at least one fn must be greater than lambda and 

the reverse inclusion is obvious. So we have this equality when g is the supremum and similarly, 

if  you  take h,  then  h is  the supremum of – fn and so again we are reduced to  the case of 

supremum, no longer unsigned, but still complex measurable functions and so we have h is also 

measurable. So both supremum and infimum are measurable functions.

Now  lastly,  if  you  have  a  pointwise  limit  of  measurable  functions,  each  fn  is  unsigned 

measurable, then f itself is unsigned measurable. So let us see why this is true? This is again 

simply because fx is the limit as n goes to infinity of fnx for each x. We have this formula and 

limit is precisely well defined when you have equality of the lim sup and lim inf. So this is the 

lim sup in particular of fnx, which is infimum over k of the supremum of n >= k fnx.



So  again  this  part  is  measurable  and  this  part  is  also  measurable,  so  the  whole  thing  is 

measurable.  So  we  see  that  we  can  deduce  many  properties  from  the  basic  properties  of 

measurability.
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Now let me define what are simple functions? So function s from x to the non-negative extended 

real is called a simple function, if the range of x takes on finitely many distinct values, alpha 1,  

alpha 2 up to alpha n. So of course, we have the immediate remark that s is unsigned measurable, 

if and only if the sets Ai, which are the preimages of this values alpha i are measurable for each i 

in 1 to n.

If the function s takes a constant value alpha i on a measurable set Ai and your x can be written  

as, suppose here x can be written as the union of i going from 1 to n, Ai, then so fx can be  

decomposed into measurable sets Ai finitely many. In simple functions, we do not allow it to 

take the value plus infinity.  So it is only defined for non-negative real numbers,  but not the 

extended real numbers.

So we only allow the sets Ai, where sx is a finite real number from 0 to infinity, then these sets 

are measurable and x can be decomposed as finite union of this Ai. In fact, they are going to be 

disjoined because  alpha  i  are  distinct.  So these  are  very much  like  the  piece  wise constant  



functions that we have dealt with when we were defining Riemann integrals, there we had boxes, 

the piece wise constant function take to constant value over a partition.

The partitioning was for boxes only, but here we are allowing partitions with measurable sets Ai 

and then it is more or less the same definition as the piece wise constant function. So a simple 

measurable function is very useful in measure theory because of the following lemma, because if 

f  is  an unsigned measurable  function,  then there exists  a  sequence sn of  simple  measurable 

functions.

Such that first part is that it is an increasing sequence of non-negative measurable functions and 

bounded  above  by f  and  the  second  part  is  that  the  limit  of  these  measurable  functions  is 

precisely the function f. So sn converges to f point wise on x. So this kind of result says that any 

unsigned measurable functions can be approximated by simple measurable functions.
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So let us see the proof rather the sketch of the proof. So first of all define functions phi n from 0 

to plus infinity as follows. So we define phi n of an extended real number t, if 0 is less than or  

equal to t is less than or equal to this n, where n is this index here, then we can find a natural  

number k, such that k over 2 to the power n is less than or equal to t is less than or equal to k + 1  

by 2 to the power n and in this case, we write this as k.



So for each t in this interval 0 to n, less than n we find an interval, so we subdivide this interval 0  

to n into equal intervals of length 1 over 2 to the power n and our t will lie in one of these 

intervals and we find this index k such that k by 2 to the power n is less than or equal to t is less 

than or equal to k + 1 by 2 to the power n. So we are taking this value k here, where t lies  

between k by 2 to the power n and k + 1 by 2 to the power n.

And then, if t is greater than or equal to n, we just set it as n. So first note that phi n inverse of a  

Borel set 0 to plus infinity is a Borel set in 0 plus infinity. In other words, phi n is a Borel’s 

function and secondly that for any t and so t in 0 plus infinity and n greater than or equal to 1, we 

have the inequality t – 1 by 2 to the power n is less than or equal to phi and t is less than or equal 

to t, which means that as n goes to infinity phi nt converges to the identity function t.

And thirdly that if we set sn of x is equal to phi n of fx for x in x, then this is the sequence of  

functions that we want. This is a simple function, because it can be written as a sum k = 1 to n  

times 2 to the power n. Here n times 2 to the power n is the number of subintervals of length 1 by 

2 to the power n that we are dividing into for the set 0 to n. So we have k = 1 to n times 2 to the 

power n of this value k over 2 to the power n, sorry, this should be k over 2 to the power n.

And then you are multiplying by the indicative function of the inverse image of precisely these 

intervals k by 2 to the power n, k + 1 by 2 to the power n. So here again this should be a strictly  

less than sign. So these are all Borel sets. So these are all measurable functions. The indicative 

functions are all measurable functions and plus you have n times chi of the set n + infinity. So  

this is a finite sum of indicative functions of measurable subsets of x. So this again should be f 

inverse of n + infinity. So these are all measurable and so this snx is a simple function.
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And it is easy to show that snx is less than or equal to sn + 1x. So this proves part a and the limit 

of snx as n goes to infinity is equal to the limit  of n goes to infinity phi n of fx and this is  

precisely equal to fx as phi n, t converges to the identity function t.


