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Lecture 4
Elementary Sets and Elementary Measure: Part 1

This is just to separate the subsets of Rn into two groups: one will be
the measurable subsets of Rn and the other is the non measurable sub-
sets. The measurable subsets will follow our geometric intuition about
length, area, volume etc. They will also satisfy the finite additivity
property. But this property will fail in the non measurable subsets.

Today we will see the notion of elementary sets and elementary mea-
sure of those sets. So we will define what are intervals and boxes in
higher dimensions, say, in n-dimensional Euclidean space as well as
what is an elementary set. Then we will define the elementary measure
of those sets and prove that it does not depend on the choice of the
description of your elementary set in terms of finite unions of disjoint
boxes.

So we can begin our study of measuring the subsets of Rn from sets
which have very simple structure. These are called elementary sets.
We will see that we can produce a method to give a numerical value
to each such elementary subset of Rn which not only has the finite
additivity property but also it will conform to all geometric intuition
via the notion of length, area and volume. So these are called elemen-
tary sets and the numerical value that will be assigned to elementary
sets will be called elementary measure. So let us begin our first case
for the real line R. Let us consider those subsets of R from which we
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can easily determine what should the length of such a subset. The
easiest subset that one can think of is in fact the interval (a, b), say.

So of course we know that the length of the interval is (b− a). Now
we can try to see if we have rather an open end at a and the end at b
is closed, that is, consider the interval I = (a, b], then the length is

`(I) = lim
x→a+

(b− x) = b− a.

Therefore we can consider all kinds of intervals which are either both
endpoints closed, or one of them can be open, or even both of them
can be open, and the lengths will still be the difference between the
higher endpoint and the lower endpoint. So we make this definition for
an interval.

Interval: If −∞ < a ≤ b <∞ (having considered also the degener-
ate case when it is just one point and in this case our length will just be
zero), then an interval is a set of the form: [a, b],(a, b],[a, b) and (a, b).
So any such subsets of R will be called an interval in our terminology.
We assign the numerical value

m([a, b]) = b− a = m((a, b]) = m([a, b)) = m((a, b)).

So in all such cases we will assign the value (b− a) to such an interval.
So for all these cases, the numerical value is simply (b− a).
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In higher dimensions, in general, for Rn, n ≥ 1, we define a box as a
Cartesian product I1 × I2 × · · · × In of intervals in R. For example, in
dimension two, if our one of our intervals is (a, b) and the other interval
is (c, d), then our box will be simply the square with appropriate sides
removed whenever we encounter an open endpoint.

So in this case our b endpoint is open, so this side will be open and
our d endpoint is open, so this side will also be open. So any such
region enclosed by such lines will be called a box. So just from the
general meaning of the term we call it a box.

Definition: For a box B ⊆ Rn, we define the numerical value

m(B) =
n∏

i=1

m(Ii) (Volume formula).(1)

So, here for this box B in the picture, we will have the measure of
B to be simply (b − a)(d − c). So it is just the product formula for
the area in this case. Similarly in higher dimensions, (1) is the volume
formula for a box.

So, now we have started with the most elementary notion of a subset
which has an obvious size which is given by the length or the area or
the volume.

Lemma 0.1. For x ∈ Rn, B + x = {x + b ∈ Rn : b ∈ B}

If B = (a, b]× [c, d], then B + x = (a + x1, b + x1]× [c + x1, d + x2]
for x = (x1, x2) ∈ R2. It is clear that the length of each of the later
intervals remains invariant because we are translating it by an amount
x = (x1, x2). So the first interval is translated by an amount of x1, and
the second interval is translated by an amount x2. But the resulting
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length remains the same. Now we can define what is an elementary set
in Rn.

Definition 0.2. (Elementary set in Rn): A subset E ⊆ Rn is called
elementary elemetary if it is a finite union finite union of boxes.

Now we have the following theorem:

Theorem 0.3. Let E be an elementary subset of Rn. Then

(1) E can be expressed as a finite union of disjoint boxes.
(2) If E is a union of disjoint boxes {Bi}ni=1 and E is also a union

of disjoint boxes {B′j}n
′

j=1, then

m(E) :=
n∑

i=1

m(Bi) =
n′∑
j=1

m(B′j).

Here m(E) is called the elementary measure of E.

The first one says that E can be expressed as a finite union of disjoint
boxes. So our elementary subsets may have boxes which are overlap-
ping. But the first part says that it can always be expressed as a finite
union of disjoint boxes.

Secondly, it says that it does not matter what kind of partitioning
of E you consider in terms of finite union of disjoint boxes. So it is
important to have disjoint boxes and then regardless of the partitioning,
this sum of the measures of the each box is will be same. This common
value will be denoted as m(E).
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So let us prove the first part of the theorem. We have to show that
an elementary set E is a finite union of disjoint boxes. Let us begin
with the simplest case, that is, for n = 1. So the dimension of Rn,
where n, the dimension of Euclidian space is one. So we have the real
line R and E is an elementary subset of R. Suppose that E can be
written as a union of two boxes. So the first one, say, a closed interval
[a1, b1] and the second one is (a2, b2]. So there is some overlap. Now we
would like to partition this. So this is the union, the whole region will
be the our set E. E is the union of the interval [a1, b1] and (a2, b2]. So
the obvious thing to do is to have the first interval. The first interval
should be this one I1. The second interval should be this one. This
is I2 and the third interval should be the rest I3. So what we have
done here is that we have taken the endpoints of the these intervals
and we have arranged them in an increasing order from left to right.
So a1 ≤ a2 ≤ b1 ≤ b2. So you can even have the endpoints to coinside.
So that is why I have put an less than or equal to sign. Of course, here,
there in our example, there is a strict inequality. But, in general, the
endpoints can be the same. So we have this. We have arranged the
endpoints of the intervals in increasing order and then we can define
our intervals I1 = [a1, a2), I2 = [a2, b1) and I3 = [b1, b2].

We have whatever whether it is closed or open, we put that condition
for the first one and for the last one. Whether it is closed or open, we
also put the same. So now we can write our E as the disjoint union of
I1, I2 and I3. So this simple geometrically obvious method works for
more than one intervals and also in higher dimensions.

So this was for our baby example [a1, b1] ∪ (a2, b2]. Then this is our
decomposition, where I1, I2, and I3 are given by this this expression.
So now we can easily generalize to k intervals in the dimension one. So



6 PROF. INDRAVA ROY

E = ∪nk=1Ik. But now, our Iks may not be disjoint. So this union may
not be a disjoint union. But, again, we can arrange the endpoints of
the intervals Ik’s. So we will have 2k endpoints. We have k intervals
and each has two endpoints. So we have, in total, 2k endpoints in
increasing order:

a1 ≤ a2 ≤ · · · ≤ a2k.

So we have 2k points which are now arranged in increasing order.
Now we are going to do the same thing that we did in this example.

So now define I ′k = [ak, ak+1) if k = 2, . . . , n − 2. Here we are left
with the least endpoint and the highest value endpoint. When you have
n − 2 and you do ak+1, then you end up with an−1. So the intervals
with these endpoints are covered. What is left is a1 and an. So I define

I ′1 = [a1, a2) ∩ I1

Here I am taking the intersection because I1 may be open at the point
a1. So then you will end up with the open interval. Similarly, we define

I ′n = [an−1, an) ∩ In.

So I leave it as an exercise that I ′k, k = 1, . . . , n are disjoint intervals
and E can be written as the union of these disjoint intervals I ′k, k =
1, · · · , n. So this proves our assertion in the case n = 1, that is, this
proves the first part of the theorem for n = 1.


