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Lecture-3
Infinite Sets and the Banach-Tarski Paradox - Part 2

We have seen that we can measure relatively the size of infinite sets.
Now we come back to the question of measuring subsets of Rn and we
will see that the problem of measure starts here. Now, whenever we
are trying to measure subsets of Rn, they can be finite sets or infinite
sets. If you simply use the cardinality to be infinity, then we only get
infinite values and we cannot do any arithmetic with it, so it is not
very useful.

So, if we use the concept of equinumerosity, then one can still have
an idea of the relative size of subsets of Rn. Suppose that n = 1,
and we take two sets [0, 1] and [0, 2]. Now there is an injection f :
[0, 1] → [0, 2], but one can easily also produce a bijection simply by
taking x 7→ 2x. We see that these two subsets of R are equinumerous,
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but our geometrical intuition says that the set [0, 1] is half the size of
the set [0, 2] in terms of length.

So, if we want to have our geometrical intuition conform with the
idea of equinumerosity, then it is no good because it says that both
these sets are of the same size. (Refer Slide Time: 03:07)

In fact, one can even have for any ε > 0, the set [0, ε] and the set
[0, 2] are equinumerous. So, you can take ε to be as small as possible
and still they are equinumerous. So, it not only violates our geometric
intuition, but it gives you a sort of contradictory intuition that as you
can have as small a set as possible [0, ε], but it will still be of the same
size of [0, 2]. This violates our geometric intuition.

Thus we are trying to search for a way of assigning numerical values
to subsets of Rn which will conform to the geometrical intuition that
we have in terms of length, area or volume, etc. But such a thing is
not possible was shown by a theorem of Banach and Tarski. This is
the famous Banach-Tarski paradox and this states that:

Theorem 0.1 (Banach-Tarski Paradox). There exists a decomposition
of the 2-spheres into finitely many pieces, which can be rearranged to
form 2 spheres of the same size as the original one.

In other word, we can break a part something as a size of peanut or
a pea, and we can reassemble it into many many pieces of the same
size. And we can repeat this over and over again, and we can produce
by taking the rearrangements to produce a something of the size of the
whole earth. This is a kind of a paradox. But this paradox uses the
axiom of choice in a fundamental way. (Refer Slide Time: 06: 13)
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So, what is the axiom of choice? Let me recall the axiom of choice.
Axiom of choice : Given a collection of non-empty disjoint sets A,
∃ a set C such that

C ⊆ ∪
A∈A

A and |C ∩ A| = 1, for each A ∈ A.

One can think of it as choosing one element from each of these con-
stituent sets A, and we can form a new set C by taking arbitrarily
many such choices, and this is why it is called the axiom of choice.

A consequence of the axiom of choice for infinite sets, we have seen
that if there is a bijection between a set and a proper subset of itself,
then it is infinite. A consequence of the axiom of choice is given by the
following theorem:

Theorem 0.2. A is an infinite set if and only if there is a bijection
between A and some proper subset of itself.

This characterizes the infinite set as the bijective correspondence be-
tween A and some proper subset of itself.

Now we are coming back to the Banach-Tarski paradox. It says
that you can decompose the unit sphere into finitely many pieces and
reassemble them to give 2 copies of the same original sphere. This
violates our principle of cardinality. So, the Banach-Tarski paradox
violates the principle of finite additivity. It is something like saying
that: You have a cup of water, and you can break it. You can divide
this cup of water into many pieces and reassemble it, and you will get a
whole gallon of water. That is not possible and it leads to this paradox.
This is why it is important to have a concept of what are measureable
sets and what are non-measurable sets.

So, the non-measurable sets will fail to have this finite additivity
property and the measurable sets will be the ones which are well be-
haved in terms of additivities, not only finite additivity, but even count-
able additivity as we will see in our next lectures. (Refer Slide Time:
10:14)
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Geometric intuitions for subsets of Rn: For any E ⊆ Rn, assign
a (finite) numerical value, which corresponds to our geometrical intu-
itions: So, what are the geometric intuitions that we have?
(i)Finite additivity: If E,F ⊆ Rn disjoint, the measure which I de-
note here by m (which is the numerical assignment), then m(E ∪F ) =
m(E) +m(F ).
(ii) Invariance under rotation, translation and reflection: Which means
that if you have some subset E ⊆ Rn, and if you rotate it by some angle
θ, then the area should not change. Area is invariant under rotations.
Similarly for translations and reflections. (Refer Slide Time: 13: 01)

So, the question is: Whether one can assign a numerical value m(E)
to any subset E ⊆ Rn such that both these conditions (i) and (ii) of
finite additivity and invariance under rotations and translations and
reflections are satisfied. The answer is in the negative. This is due to
a theorem of Banach and Tarski.
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Theorem 0.3 (Banach-Tarski Paradox). Given a solid ball B ⊆ R3,
there exists a decomposition of B into finitely many pieces such that
they can reassembled to produce two disjoint copies of the ball B.

This will lead to the violation of our finite additivity property. (Refer
Slide Time: 15: 22)

Now, let us see how the Banach-Tarski paradox leads to the violation
of finite additivity that we described before. So first of all, let for any
E ⊆ Rn, we denote by µ(E), the measure of E. This is a value in
[0,∞], which is the numerical assignment of the measure of E. Now,

the Banach-Tarski paradox says that the ball B can be written as
n
t
i=1
Ei

(the disjoint union of a finite number of sets Ei, i = 1 to n), i.e.,

B =
n
t
i=1
Ei(1)

Also, there exists B1tB2, which can also be written as a finite union
n
t
i=1
Fi i.e.,

B1 tB2 =
n
t
i=1
Fi,(2)

and each Bi is a copy of the unit ball B. If we try to apply finite
additivity, we quickly get a contradiction.

Here by reassembling Ei to form B1 t B2, we mean that these Fi’s
have the same measure as the Ei’s, for i = 1, 2, · · · , n. So, Fi’s can
be formed for example by a sequence of rotations, translations and
reflections of the Ei. Since we have assumed that the measure remains
invariant, µ(Fi) should be equal to µ(Ei), i.e. µ(Fi) = µ(Ei), for
i = 1, · · · , n.
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From Eq. (1), we have µ(B) =
∑n

i=1 µ(Ei). On the other hand,

2µ(B) =µ(B1 ∪B2)

=
n∑

i=1

µ(Ei) (by Eq. (2))

=
n∑

i=1

µ(Fi) (since µ(Fi) = µ(Ei))

=µ(B).

Therefore, either µ(B) be 0 or it should be infinite. Therefore, we get
a violation for the finite additivity property as a consequence of the
Banach-Tarski paradox. (Refer Slide Time: 19:00)

Now the Banach-Tarski paradox uses the axiom of choice. So as
a consequence of the axiom of choice, we have to separate subsets of
Rn into two categories, one as measurable subsets and another is non-
measurable subsets. The measurable subsets will follow our geometric
intuitions (i) and (ii), i.e., both finite additivity as well as invariance
under translations, rotations and reflections, but non-measurable sub-
sets will not follow both those conditions (i) and (ii).

The whole idea of measure theory is to study these measurable sets,
which follow certain geometric intuitions. We try to build up a theory
which is consistent with our usual axioms of set theory as well as the
axiom of choice. We will see in the next lecture how we can start to
assign numerical values to subsets of Rn, which follow both our finite
additivity rule as well as invariants under rotations, translations and
reflections.


