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So, let us continue studying some more properties of the Lebesgue outer measure. In this 

lecture, we will look at 2 more properties, the first one is called finite additivity for separated 

sets, and the second one is called outer regularity.  
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So, let me start with the remark is that, due to the banach tarski paradox that we have seen 

before due to the banach tarski paradox, we cannot expect finite additivity property to hold 

for arbitrary subsets E F of R d this is to say that the outer measures of E union. So, arbitrary 



disjoint subsets of R d which is to say that the outer measure of E union F may not be equal 

to the outer measure of E plus the outer measure of F.  

 

So, we must this implies that we must restrict our retention to smaller classes of rather than 

taking arbitrary sets E and F we have to restrict our what kind of sets we allow for 

considering finite additivity. So, 2 smaller classes of disjoint pairs of sets E and F. So, one 

such restriction is given by the so called separated sets. So, 2 sets 2 subsets E and F of R d are 

called separated if the distance between E and F is strictly greater than 0.  

 

This is the quantity given by the infimum of the Euclidean distance between 2 points such 

that X and Y such that x is in E and y is in f. So, this infimum is strictly greater than 0. So, in 

this case we call E and F separated. So, of course, if this happens one can also show that this 

implies that E and F are disjoint because, if E and F have a common point then the Euclidean 

distance between that point with itself is going to be 0. So, the infimum is will be 0. So, 

separated implies disjoint.  
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So, the next lemma establishes finite additivity property for separated sets. So, let E and F the 

subsets of R d which are separated the separated sets. Then, we have the finite additivity 

property, which is that the outer measure of the union Lebesgue outer measure the union is 

equal to the sum of the Lebesgue outer measure of E and F. So, let us try to prove this. So, by 

sub-additivity we have that the measure the outer measure of the union is bounded above by 

the sum of the Lebesgue outer measure of E and F.  

 



So, we have seen countable sub additivity. So, in this case we only have finite only 2 sets, but 

we can add infinitely many countable many empty sets and then the measures all for all the 

rest of the sets will be 0 and we will get this inequality. So, countable sub-additivity implies 

finite sub-additivity. So, it is enough to show the reverse inequality, which is that m star E + 

m star F less than or equal to m star E union F. So, again, notice that if m star E union F is 

plus infinity, then the inequality is stable inequality holds. And so, suppose that m star E 

union F is finite.  
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So, now, I am going to again use the infimum definition of the Lebesgue outer measure. So, 

there exists. So, given epsilon greater than 0, there exists a collection of boxes B i i = 1 to 

infinity such that E is covered by the union of these B i i = 1 to infinity and the sum i = 1 to 

infinity of the measures of these B i is bounded above by m star E + epsilon. So, now, 

suppose that B i suppose that we have sub-collections B i prime i = 1 to infinity and b j 

double prime.  

 

So, to distinguish the indices, I will write here l for the first one and j for the second one, j = 1 

to infinity certainly such that. So, these are sub-collections of the original collection of the 

collection B i i = 1 to infinity. So, each of these be B l prime and B j double prime are one of 

these B i s. So, such that E is covered by, I have to cover E union F by this rather than just E, 

I am going to cover E union F by the whole collection B i and so, now, I am dividing the 

collection B i into 2 sub-collections, one that covers E.  

 



So, B l prime l = 1 to infinity and F is covered by j = 1 to infinity B j double prime and we 

also suppose that none of the B l prime intersect F and none of the B j double prime intersects 

E. So, then these 2 collections are separate there is no overlap between them. So, this implies 

that m star E + m star F this is bounded above by the sum l = 1 to infinity m of B l prime and 

then j - 1 to infinity m of B j double prime. But if because of this assumption that we have 

that none of the B l prime intersect F and none of the B j prime intersect E.  
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This implies the due to our assumptions on these collections B l prime and B j double prime j 

= 1 to infinity, we have that the sum i = 1 to infinity of the measures B i = l = 1 to infinity m 

of B l prime + j = 1 to infinity m of B j double prime. So, this is because there is no overlap 

between these 2 collections B l prime and B j double prime. So, this implies that the measure 

of outer measure of E plus the outer measure of F is bounded above by this sum m B i.  

 

But this was chosen such that this is less than or equal to m E union F + epsilon and since, 

again epsilon is arbitrary was arbitrary. So, we get the required inequality m star E + m star F 

is less than or + m star E union F. But now, in general the assumption may not be true that 

none of the so, let me write it in symbols B l prime intersection F is empty for all l greater 

than or equal to 1 and B j double prime intersection E is empty for all j greater than or equal 

to 1.  

 

So, this may not be true because, for example, if you have 2 sets E and F. So, there could be 

one box B j or B i which intersects both and so, our assumption will be invalid, because this 

set will neither belong to any of the B l primes nor will it belong to any of the B j double 



primes. So, this will violate our assumption. So, this set violates this assumption. So, what we 

have to do is to use the fact that these 2 sets are separated and we have to break these big 

boxes B i into smaller chunks, so, that none of the smaller bits overlap both intersect both E 

and F.  
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So, note that each B i can be partitioned into finitely many boxes. Now, let me give it a 

different name A k k = 1 to. So, A i k = 1 to m i, so, for each i, we will have a partitioning of 

each box B i into finitely many boxes such that the diameter of each A k i is less than or 

equal to r for any given r greater than 0. So, here the diameter of a set A this is the supremum 

of the Euclidean distance between any 2 points of A.  

 

So, we can restrict the diameter of the partition boxes, the boxes used in the partitioning of 

each B i says that the diameter is bounded above by any given positive number r. So, if r is 

taken to be strictly less than the distance between E and F then no A k i for i greater than or 

equal to 1 and 1 less than k less than or equal to N i can intersect both E and F. So, that so, 

the new countable collection of boxes A k i i = 1 to infinity k = 1 to N i.  

 

So, this collection covers E union F because the union when you take the union of these A k i 

over k this is precisely B i because this is a partitioning of this box B i and this collection 

satisfies our assumption that there exists sub-collections A. So, rather than taking 2 indices, I 

can rewrite it re-index it to write it as a collection it A n n = 1 to infinity. So, now, we can 

break these this collection A n s into 2 sub-collections and A m prime.  

 



And then let us say A q double prime q = 1 to infinity such that E is covered by the first 

collection and F is covered by the second collection and it also satisfies that A m prime 

intersection F is empty for all M and A q double prime intersection E is empty for all q. So, 

this assumption will be satisfied once you subdivide each box B i into smaller boxes with 

diameter bounded above by the distance d E f. So, note that this is a positive number. So, r 

can be chosen here greater than 0. So, this takes care of r assumption that we had before and 

in general case also we can reduce to that case. So, this proves the lemma.  
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The next lemma is called outer regularity and this says that the outer measure so, let E be a 

subset of R d then we have a formula for the outer measure given by the infimum of the outer 

measures of sets u that are super sets of E such that each of these u’s  are open. So, this is 

called outer regularity property for the Lebesgue outer measure and this is one of the most 

important properties and we will see that this property also can be it can also appear in the 

abstract measures based context.  

 

So, let us try to prove this. So, first note that note that m star E is less than or equal to m star 

u for any open set u that contains E. So, we can take an infimum on the right hand side and 

we will get m star E is less than or equal to the infimum of these sets u each of these u’s are 

open and E is contained in each of these open sets u. So, this is obvious from the 

monotonicity property. Now, so, it is at suffices to show the reverse inequality which is that 

infimum over open sets of m star u less than or equal to m star E.  

 



So, in particular what we will do is we will show that given epsilon greater than 0, we have 

infinite infimum of these sets m star u less than or equal to m star E + epsilon. So, again we 

use the epsilon trick and we will try to show this inequality here.  
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So, to show this first note that if m star E is infinite, then the inequality holds trivially 

equality holds. So, suppose that m star E is finite. So, in this case this implies that there exists 

a collection of boxes B i i = 1 to infinity such that E is contained inside this union of the B i's 

and the sum are equal to 1 to infinity and B i less than or equal to m star e + epsilon. So, let 

me take epsilon by 2 here. So, now, these B i’s that we have taken these may not be open, 

but, we can enlarge each of these B i‘s as we have done in the last lecture.  

 

We can enlarge these B i’s such that they become open but still we can have control over the 

volume of the union. So, for each i choose an open box B i prime such that the measure of B i 

prime first of all that B i’s contained in B i prime and the measure of B i prime is less than or 

equal to the measure of B i + epsilon / 2 to the power i + 1. So, this implies that the sum from 

i = 1 to infinity m of B i prime is less than or equal to the sum i = 1 to infinity m B i and then 

you will have an extra term of epsilon / 2 but this is less than or equal to m star E + epsilon / 

2.  

 

So, these 2 epsilon / 2 s can be written as epsilon. So, we have produced E is covered by 

these boxes B i prime is equal to 1 to infinity and so, this is an open set, this is an open set 

and the measures of the union of i = 1 to infinity B i prime less than or equal to this sum i = 1 

to infinity and B i prime which is bounded above by m star E + epsilon. So, we have 



produced an open set such that it is bounded above by m star E + epsilon. Therefore, when 

we take the infimum over all open sets, then it is going to be less than this quantity.  

 


