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Lecture – 2 
Infinite Sets and the Banach-Tarski Paradox - Part 1 

So, in the last lecture, we saw the notion of cardinality of a finite set and we saw the 

definition of the cardinality is not ambiguous, meaning it is well defined. We also showed 

that the cardinality follows this finite additivity property by which if you take two disjoint 

non-empty sets, then the cardinality of the union of the two sets will be equal to the sum of 

the cardinalities of the individual sets.  
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Today, we will see the notion of an infinite set and even though we cannot have a reasonable 

theory of cardinality of infinite sets, but we can still have a notion of measuring the relative 

size of two infinite sets via injective or bijective or surjective functions and which is called 

equinumerosity. So, one of the main theorems in this topic is the Cantor-Schroeder-Bernstein 

theorem, which gives you a condition under which two arbitrary infinite sets are 

equinumerous meaning that there exists a bijective correspondence between the two. 

Now, when it comes to measuring subsets of the Euclidean space , we will show that the 

notion of cardinality and equinumerosity will not help us because it will violate our 
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fundamental geometric intuitions of length, area or volume and we will show that given some 

reasonable geometric rules like finite additivity and invariance under translations, reflections 

and rotations, if we allow our new assignment of numerical values to arbitrary subsets of 

to follow these rules, then we arrive at a contradiction and this is called the Banach-Tarski 

paradox, which says that if you can start with a solid unit ball in  and you can divide it into 

finitely many pieces which can then be reassembled to form two disjoint copies of the 

original ball and so our notion of finite additivity will be violated in this case.  

The Banach-Tarski paradox uses in a fundamental way, the so called Axiom of choice which 

is an axiom in set theory and we will see that with this Axiom of choice, the Banach-Tarski 

paradox holds and the violation of the finite additivity for subsets of  forces us to 

categorize subsets of  into two groups, one will be called measurable subsets and the other 

will be the non-measurable subsets.  
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Now that we have seen the basic properties of cardinality of finite sets, let us turn our 

attention to infinite sets. So, by definition a set  is called infinite if it is not finite. So, since 

we have seen already that a set  is finite implies that there is no bijection between  and a 

proper subset of . So, if you take the contrapositive of this statement, we get this corollary 

that if  has a proper subset  such that there exists a bijection between  and , then  is an 

infinite set.  
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So, this is just by taking the contrapositive of this statement about finite sets. So now, if we 

talk about cardinality of infinite sets, then this notion is not well defined.  
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So, we still want some method or some way to compare the sizes of two possibly infinite sets 

and we again make use of the existence or non-existence of bijective maps between two sets, 

but now we can also consider injective maps and surjective maps. So, this leads us to the 

concept of equinumerosity. So, if  and  are non-empty sets and these non-empty sets can  

possibly be finite or infinite, and there exists a bijection between  and , then  and  are 

said to be equinumerous and we write this following notation modulus of  is 

modulus of  So, of course, we can call it the cardinality of , but this cardinality does not 

have any defined finite numerical value, but still we can write this as a sort of equation 

between infinite objects. So this is a further notation. 

So if there exists an injective map  , but no surjective map, then we write that 

, and if there exists a surjective map  but no injective map, then the 

. 
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So, the question naturally arises what are the conditions under which we can compare two 

possibly infinite sets and one such condition is given by Cantor's theorem which says that the 

cardinality of is strictly less than the cardinality of the power set of , that is

. So, here one has to show that there exists an injective map between  and 

the power set of  , but there is no surjection.  

So, it is easy to produce an injective map. So, we can define an injective map as follows.:    

, 

 is the power set of A, that is set of all subsets of . So, this map takes an element  in  

 to the set  and one can easily check that this is an injective map. So, I will leave it as an 

exercise for you to check that this is an injective map. Now, the second part is to show that 

there is no surjective map . So, we again try to prove this by contradiction. So, 

suppose we take the following subset  of . So,  

                                       

Now, note here that  is a set and it is a subset of  and so we are asking that, this 

collection B should be all the elements of  such that  does not belong to this particular 

subset  of . 
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Now, we claim that  does not belong to the range of this map . Now to show this, we ask 

the following question that suppose first that to the contrary, that  for some  in A, 

which means that  belongs to the range of . And now we ask the question does  belong to 

 or  does not belong to  ? So, this question will lead us to an abstract conclusion which is 

as follows.  

So, suppose that , then this is equivalent to saying that ,  is a subset 

of  and you can take , but this means that , and this is a contradiction. So, 

similarly, one can ask if  and this also leads to a contradiction. So, in both cases we 

had led to a contradiction. This is the end of the proof.  

Now, another famous theorem which deals with equinumerosity is as follows and this is a 

theorem which is named after Cantor, Bernstein and Schroeder. It says that if  and  are 

non-empty sets and  is an injective map and  is also an injective map, 

then  and  are equinumerous. So, the cardinality of  is equal to the cardinality of , 

equivalently there exists a bijection  between  and . 
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So, I will not prove it here, but rather I refer you for the proof see Folland’s book and this is 

in the introduction chapter on set theory. So, a concise proof can be found there.


