
MEASURE THEORY

PROF. INDRAVA ROY

Lecture 1: Finite Sets and Cardinality

Welcome to the first lecture on Measure Theory. When we say the word
measure in its everyday meaning, we can think of measuring the length
of an object or the area or the volume of an object. So this measures
the size of the object or we can think about measuring the weight of
an object or the temperature and so on. But at a fundamental level
if you just think of it mathematically, we are just assigning numerical
values to the various properties of the object. Now, this assignment of
numerical values should follow certain reasonable intuitions, reasonable
rules. For example, if we have two cups filled with water and you pour
the water into a third empty vessel, then the amount of the water in
the third vessel should be equal to the sum of the amounts of water in
the two cups. So, these kinds of rules are reasonable to explain.

Today, we will see that if we get this numerical assignment for finite
sets to be the cardinality of that set, then such a rule can be expected
and it holds. This property is called the finite additivity of the car-
dinality. So first we will look at the definition of cardinality and we
will try to show that this definition is indeed well posed and it is not
meaningless. Secondly, we will show that according to this definition,
we will have this finite additivity property in which when you take two
disjoint finite sets and you take the union, then the cardinality of the
union will be the sum of the cardinality of the individual sets.
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Let us begin by recalling the definition of a finite set and its cardinality.
A set A is called finite if either A is empty, (in this case we assume that
empty sets are finite), or if A is not the empty set, there should exist a
bijection between A and the set of positive integers from 1, 2, . . . , n for
some n in N. So let me reread it. A set A is called finite either if it is
empty or if it is not empty, then there should exist a bijection between
the set A and {1, 2, . . . , n}. So in the first case, the cardinality of A is
said to be 0 and in the second case the cardinality of A is said to be n.

Now whenever we meet a definition, we should knock it from all sides
to see whether it makes sense and whether there is no ambiguity in the
definition. In this case, in the definition that I just provided, there
is a bit of ambiguity. Because the natural number n, the cardinality,
is not entirely determined by the set A itself. I can ask the following
question.
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Given a non-empty set A, does there exist natural numbers n and
m, m 6= n, such that there exist bijections f1 : A −→ {1, 2, . . . , n} and
f2 : A −→ {1, 2, . . . ,m}?

So it is not clear from the definition that this situation is precluded
and if this question has a positive answer, that is if there exist two such
bijections with different ranges, then our notion of cardinality will not
make sense. One should answer this question in the negative to be able
to say that this definition is not meaningless, is not absurd. Okay, so
for this we have the following theorem.

Theorem 0.1. Suppose A is a non-empty set and there exists a bijec-
tion f : A −→ {1, 2, . . . , n} for some natural number n. Suppose also
that B is a non empty proper subset of A, then there exists a bijection
g : B −→ {1, 2, . . . ,m} for some m(< n).

By this theorem, notice that there is no bijection h : B −→ {1, 2, . . . , n}
for any proper subset B of A, here A has cardinality n. Hence we an-
swer the above question in negative. This kind of results can be found
in many books, so I will not prove it here. Let me just give the ref-
erence. See Munkres’s book on Topology, chapter 1, section 6, where
this is proved in detail.

Now this theorem has a few important consequences. Let us collect
them in this corollary.

Corollary 0.2. 1. If A is a finite set, then there is no bijection of A
with a proper subset of A.
2. The cardinality of a finite set is uniquely determined by A.

This answers our question about the well posedness of the definition
of cardinality of a finite set. Let us see of the short proofs of the above
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corollary. If A is a finite set, then there exists a bijection f from A to
some subset of the form {1, 2, . . . , n} for some n. Now if B ⊂ A, and
g : A −→ B is a bijection, then I am going to produce a bijection h
between B and {1, 2, . . . , n} and h is simply given by f ◦ g−1. So g−1

takes you from B to A, and f takes you from A to {1, 2, . . . n}. So our
h, given by f ◦ g−1, is a bijection between B and {1, 2, . . . , n}. This is
a contradiction to the theorem. This h we note that this is a bijection
because it is composed of two bijective functions, therefore h itself is a
bijection. So we have arrived at a contradiction.

For the second part, we have to show that if f1 : A −→ {1, 2, . . . , n}
is a bijection and f2 : A −→ {1, 2, . . . ,m} is also a bijection, then
we have to arrive at a contradiction. Let us suppose that without
loss of generality that m is less than n. Then f1 ◦ f−12 is a map from
{1, 2, . . . ,m} to {1, 2, . . . , n}. This is a bijection, but since m is strictly
less than n, we have arrived at a contradiction. This is a contradiction
since {1, 2, . . .m} is a proper subset of {1, 2, . . . , n} and this follows
from the first part of our corollary. Therefore, we have shown that the
notion of cardinality of a finite set is well defined.
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Now, there are further easy corollaries, one is as follows: Finite unions
of finite sets are also finite set.

Let us see a proof. Let me just take two non-empty sets A, B, both
are non empty. Then, I will prove that if A and B are finite, then A∪B
is finite. Now we have seen that any proper subset of a finite set is also
finite.We have A∪B = (A∆B)∪ (A∩B), here A∆B is the symmetric
difference.

So now we have written A ∪ B as a union of two disjoint sets, first
one is the symmetric difference of A and B and the second one is the
intersection of A and B. So a quick Venn diagram will show that this
is true. So this is A and B and the symmetric difference is the part
without the intersection. The intersection is of course the overlap. So
now, we can assume that without loss of generality that A and B are
disjoint. So it is enough to show that if A and B are disjoint, and
both are finite , then their union is also a finite set. Now we again go
back to our definition of finite set. We are given there exists bijections
fA : A −→ {1, 2, . . . , n1} and fB : B −→ {1, 2, . . . , n2}, n1 may be
equal to n2, but we do not care at this point. Now, we have to produce
fA∪B : A∪B −→ {1, 2, . . . , n1+n2}. Of course the expected cardinality
is n1 + n2 and this is a type of conservation law that the cardinality
of the union of two disjoint sets is the sum of the cardinalities of the
individual sets.
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We construct fA∪B : A ∪B −→ {1, 2, . . . , n1 + n2} as follows.

fA∪B(x) =

{
fA(x) if x ∈ A,

n1 + fB(x) if x ∈ B.

If x ∈ A, we land in {1, 2, . . . , n1} by fA. Because our bijection fA
is between A and {1, 2, . . . , n1}. For x ∈ B, if we just take here fB(x)
rather than n1 + fB(x), then we will end up in the set {1, 2, . . . , n2}
and there will be overlaps in the range of this function fA∪B. We do
not want this, so, I shift it by the value n1. It is an easy exercise show
that fA∪B is a bijection.

So we have shown that if you take two disjoint sets, the cardinality
of the union is the sum of the cardinalities of the respective sets.

I want to write this in the following notation. So let me denote the
cardinality of A by the absolute value symbol |A|. Then in notational
form, we have the following principle.
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The principle of conservation of cardinality: if A and Bare disjoint sets,
then |A ∪B| = |A|+ |B|.

So, I want you to remember this principle. This will be a guiding
principle for us when we talk about infinite sets and subsets of Rn. For
the moment we can also generalize this from two sets to any arbitrary
number of sets. So generalization, one can easily prove by induction,
is that if A1, A2, . . . , An are disjoint sets, then the |A1 ∪ A2 . . . An| is∑n

i=1 |Ai|, the sum of the individual components. So, we will refer to
this principle or rather this property as finite additivity.


