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Welcome this is the 9th lecture of Computational  Commutative Algebra. And in this

lecture  we  will  look  at  the  question  about  Solving  Polynomial  Equations  and  some

definitions and notions that we have developed along the way. And we will learn so, in

and  in  the  subsequent  towards  the  lectures  we  will  look  at  this  theorem  called

Nullstellensatz originally proved by Hilbert and we will see some few variations of that

same theorem and we will prove them as we  need.
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So,  we ask the following question;  k  it  is  a field and we take some m polynomials

 in . I mean finitely many polynomials in finitely many variables.

Then we ask this question does there exist  such that  for all  .

So,  we know the answer right  away the answer in  general  is  no,  if  you look at  the

polynomial .  there does not exist any real number a such that  is 0.

So, the answer in general is no but, well that is because R is not algebraically closed. So,

we might say that. So, that is what we want to understand.
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But does there exist a point   such that  for all i. So, we may want to ask

this question. So,  here is an algebraic closure. So, this at least we can try to solve and

this is what we want to do now.
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So, now we take k to be algebraically closed because  even single polynomial in one

variable might not have a solution if the field is not algebraically closed. So, we would

like to construct we would like to work with them. So,  and definition.



Let I be an R ideal, by the variety of I we mean the set .

In other words this is the set of common zeros of all the elements in I and sometimes it is

called an affine variety, but for us this is the only thing that we are going to see for now.

So, we just use the word variety.
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Definition, a subset   is said to be a variety  if there  exist an ideal I such that

.  So, the point is we are interested in studying the set of zeros of a family of

polynomials.

So, remark; let  be a generating set , then for all ,   for all  is

equivalent to saying that  for all elements in the generating set G  . So, this is

not this is not very difficult to prove and I will leave it as an exercise.

So,  if  you prove that  for  a  generating  set  any such f  can be written  as  an R linear

combination  of  these  g’s  and  evaluating  f  at  a  is  same  thing  as  evaluating  the

combination at a, then you will get R of a times g of a and then. So, you can write this

condition . So, here are some basic properties.
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So, throughout I, J  are R-ideals in this list of properties, 

1) if , then  so, this is containment order reversing.

2) .

3)  perhaps we did not discuss what a sum of 2 ideals is. So, when I

prove it I will just explain what that is.

4) . 4 is related to Nullstellensatz this is an extremely weak version  I mean

this is not our goal it is just an easy observation for now. So, let us prove these things.
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So, let us look at 1. So, 1 is going to be an exercise  . So, we want to prove this

statement.

So, if you take a point a inside V(J), every element  of J vanishes there hence every

element of I vanishes there. So, that gives us proof. So, 1 is done I mean or you should

rewrite  whatever I just said you should write it out.

2, (Refer Time: 09:44),  So, we will use 1)  throughout in these arguments. So, let us

look at these statements. So, notice that   also intersection is inside J. So,

this thing applying 1 to this we would get that .

So, this is just a use 1) we have this order and V reverses that order. So, this is the

smallest, this is the middle one and this is the largest similarly  

same reason we could put a we could have put a J there . So, hence these are subsets of

this  set  so,    .  So,  what  we  need  to  prove  is  this  is

contained inside here. therefore, we want to show that .
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So, let us take generating sets for these let these. So, we have already proved that these

ideals  are  finally,  generated.  So,  for  simplicity  let  us  just  take  finite  generating  set

 be a generating set of I and respectively   generating set for J ok.

Then I J is generated by the product  .

. So, then we already noticed that therefore,   So, now

let us this is the remark that we made earlier, but what does this say?  Suppose.
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So, let us notice that when we evaluating a product of a polynomial at a point is same as

evaluating  them individually  and then  take  the product.  Now let   suppose

 for all i.

We want to show that it . So, if this is true then for all i, then

 otherwise there exist an i, such that , but now we use it as a product,

but  . So, in other words this  says that   for all  j  or in other

words  which is what we wanted to prove or .

So, this proves this claim and then putting that back here we get equality for these three

thing  that was statement 2.
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So, now 3 is we want to prove that  . let me just briefly say what

 is.  So,   this  is  in  general  for  any  ring  not  just  polynomial  rings  etcetera.

 is an ideal and one can show that this is the smallest ideal that

contains I and J or in other words  it contains . So, I plus J it is it is easy to check

that if you take sums of elements like this if you take b to be 0 then it is just the same as

I.



If you take a to be 0 this is just same as J and if you take elements like this a sum of 2

such elements will also have the same form if you take such an element and multiply by

an element of the ring it will still have the same form. So, this is an ideal.  So, the remark

that we want to make is so, as in the as earlier as earlier.

Let  generate I and  generate J. So, then I plus J is generated

by the union . So, if a point vanish is inside here then it vanishes

for these and for these which proves that it is in the intersection.

So, now the rest is let me complete the proof I will say it, but. So, let me just say it you

should write out the details. So, what is . So, it is a point which it is a at which

these functions and these functions vanish since these functions vanish it is in  

since these functions  vanish it  is  in  .  So,  the left  side is  inside the right  side.

Conversely  if  you take  a  point  inside   these  functions  vanish  and these

functions vanish hence every linear combination of it R linear combination also vanishes.

So, it is inside V (I + J) . So, this is the proof.
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So, next is a precursor to the Nullstellensatz. So, this is the fourth statement that we had.

So, we know that  . So,  . So, this is on the statement. Now let us

prove the other direction.



So, let   and . So, we want to show that   that is what we will

prove that  , but f is inside the radical means that there exist an m such that

 which means that .

But what is this, this is the same as . So, now, this implies that  f(a)=0 which is

what we wanted to prove. So, an ideal and it is radical have the same variety. In fact,

Hilbert’s Nullstellensatz will say that the radical of the ideal is the largest ideal with the

same variety as the ideal. So,   is the largest ideal J such that   that is

Nullstellensatz.

So, it will take us a little while to get there . So, now, let us state Nullstellensatz which

talks about solutions to polynomials.
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So, this is theorem this we will refer to as the ‘Weak Nullstellensatz’ following the book

by (Refer Time: 21:10) and there are various versions some weaker than the other weak

Nullstellensatz. So, what does this mean, what is the word Nullstellensatz mean. So, null

here is for 0, then stellen is here for places and satz is theorem. So, I mean not this

version, but a different version of this was proved by Hilbert it is called it is been stated

probably in the next lecture Hilbert’s Nullstellensatz and that was a theorem about when

polynomials would have solutions and we will see the way it is stated.



So, let k be algebraically closed. I an ideal of , then  if and

only if I = R. In other words any proper ideal of R every element of it vanishes at some

point inside   it there cannot be a common solution if and only if I is not a proper

ideal.

So, we will not prove this now we will we postpone the proof to the next lecture. So,

now, we would like to see it as a way of solving polynomial equations. So, we will still

see do this only for algebraically close fields and in the exercises I will tell you how to

do this for the same statement for other fields. It requires a little bit of calculation and

thinking about how to go from an arbitrary field to an algebraic to an algebraic closure.

So, we will not do that right now.
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So, here is a corollary which is what is useful for us to solve how is all the Grobner basis

coming to picture to do this. So, let us just assume k is algebraically closed  

inside  polynomial  ring,  then  let  I  be  the  ideal  generated  by  them  then  the  system

.

So,  this  is  what  we mean by solving  polynomial  equations  of  course,  we could  put

constants there also, but we can put the bring the constant back to the side and make it 0

just relabel what  means or what  means. So, we can as well assume that we are



interested  in  solving polynomials  equal  to  0.  So,  zeros of  polynomials  system has  a

solution if and only if 1 is not in any 1 is not in a Grobner basis of I. So, here is an

immediate application of what we have studied so far and whether 1 is in a Grobner

basis. So, this is again I mean you can rephrased as an ideal membership problem, but it

is easier to state at least it is easier to visualize this way there are algorithms which we

will compute Grobner basis.

So,  given  , we just  put  these  into  the  algorithm it  will  give  us  some  \

 which is a Grobner basis for 1 and you just check if 1 is there in it or not

if 1  or any constant is not is not there then it has a solution. So, this is a very convenient

computational way of determining. So, of course, it is not actually giving us the solutions

it actually has only tells us if the thing is if the system is consistent.

So, there are other ways to solve the system, but that we will you know we are not ready

to discuss it now. So, let us prove the corollary and in the exercises we will we will

remove the requirement of algebraically closure close in this part, but; however, we can

never determine using these arguments whether there is a solution in that field itself I

mean all of these arguments will only give us a if there is a solution in the algebraic

closure and we will see some example we will see an example.
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So, the proof is not very difficult at all, system is consistent is same thing as saying that

, this is the same thing as saying , well I is not R. So, we want to show

that this is the same thing as this is the same as saying 1 is not in the ideal, but what does

this say? This is the same as 1 is not inside I.

If 1 is inside I then every ring element is inside I conversely I mean if  if I = R then 1 is

inside I. So, this is equivalent, but notice that this is the monomial, 1 is a monomial . So,

therefore, this must 1 is not in any in a Grobner basis. So, that is the that is it is an easy

proof all the new thing that we need to observe is that I is  equal to R if and only if 1 is

inside I.

If and only if 1 is in a Grobner basis. So, this is all that we need. So, Grobner basis and

with the version of Hilbert’s Nullstellensatz that we just proved gives us ah. So, a way to

determine if a system of polynomial equations is consistent , with this we you shall let us

look at a small example in macaulay. So, just one small example mostly yeah.
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So, here a polynomial ring in 2 variables over the rationals  and . So,

there are not going to have a solution in the integers,  sorry this is not going to have any

solution over any field, g = 0 implies that x = 2, but if x = 2 then   . It is true I

mean I apologize it is true in Z mod 3, but it is it is not going to have a solution in Q . So,

sorry that is just.



I forgot to put a semicolon here. So, it just gave the output of what g is, it did not it

suppress the other  outputs  let  us ignore that.  We ask generators,  for  generators  of  a

Grobner basis  of the ideal generated by f  and g and it  returns 1. So,  1 is  there in a

Grobner basis and this system is inconsistent  is inconsistent I mean

this we can do it by inspection by ourselves.
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But if you had a larger system in many variables this is a convenient way. Let us look at

a slightly different example  . So, this is the equation of a circle if you are

thinking about it in  and then we ask f this equation along with  of course, this

has no solution in rationals because if x= 2, then you cannot get .

Let us compute Grobner basis, but the Grobner basis does not contain 1 and the reason is

well let us let us look at this way x = 2  that is  is a solution. So, the

Grobner  basis  will  only  detect  if  there  is  a  solution  or  the  system is  consistent  or

inconsistent with respect I mean in the algebraic closure and not directly in the field itself

ok.

So, this is a part that we have to be aware of and of course, we are not proved this fact

that,  but here at least it  is clear that this system has a solution over Q bar algebraic



closure of Q. So, this is the end of this lecture and in the next lecture we will study we

will try to prove Nullstellensatz and then other way other versions of Nullstellensatz and

we will use this further to understand some more properties of Grobner basis.


