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Lecture – 06
Initial ideals

Welcome to the 6th lecture on Computational Commutative Algebra. So, in this lecture we

will look at what is called initial terms and Initial ideals and after having put all these things

together we will prove the version of Hilbert basis theorem that we are after. 
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So,  recall  that  we  are  working  over  a  polynomial  ring  over  a  field  with  finitely  many

variables. And we now R is given a monomial order could be lex could be graded-lex or

something completely different. So, it has a monomial order.

Now, definition let f  be a nonzero polynomial. A term of f  is a monomial of R that appears in

f  with a nonzero coefficient from k ; what exactly we on emphasize with that.
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For example, Y 2 is a term of X+5Y 2; let us say this is a polynomial in Q [X ,Y ]. I mean if you

in  characteristic  5  this  coefficient  is  0  so  one  has  to  its  just  two ok;  that  is  a  nonzero

coefficient in characteristics different from 5. So, here we chose a field of characteristic 0  

So, this is a term anything, but not of X+XY 2 or of X 2+Y 3. So, what multiplies Y 2 should be

an element of the field and not another variable or another polynomial or ofX 2+Y 3. So, I hope

you understand what is meant by a term. So, its a monomial that appears with a nonzero

coefficient. 
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So, now we can define a initial term; let f be a nonzero polynomial. The initial term of f is the

largest term of f with respect to the given monomial ordering. It is denoted by  ¿ f  its also

sometimes called. So, maybe just write here or may be ok, sometimes called leading term.
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Now let us look at; so here are three polynomials this is again the same polynomial ring in

three variables X,Y,Z and order is graded-lex. So, here f 1 there are three terms X 2Y , X Y 2 and

Y 2.



So, if you compare these three these two are degree three polynomials this is a quadratic

polynomial. So the leading terms going to be one of these things. Here is  X 2Y  and this is

X Y 2 and in lex so there is the same degrees so we just use lex to compare we would just get

X 2. Here in  f 2 there is an XY  which is degree 2 is a Z. So, this is the one that is in that is

bigger in glex.

So, XY  and here both of them have the same degree Y 2 and XZ . So, we just have to use lex

between them. This one involves X this does not involve X. So, if you write out the lex

comparison for these two one would see immediately that this is the leading term. 

So, just so the Macaulay command for finding the leading term is lead term with a capital T.

So, one thing to keep in mind is that when you ask Macaulay for a leading term it will also

put the coefficient. Typically when we discuss the problem we will assume without loss of

generality that the coefficients are one  

So, one has to  just  keep that  in  mind when that  sometimes Macaulay is  I  mean what is

convenient for us to discuss is probably not is what is convenient to be programmed. So, that

one has to worry about. So, this is the this is an example.
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So, now let us extend this notion to ideals. Definition; let I be an R ideal, the initial ideal of I

again all of this is with respect to the given order monomial order with respect to is the ideal

generated by the initial terms of the nonzero polynomials in f in I 



So, this set itself is just a set of monomials, its not an ideal. So, we look at the ideal in R

generated by this set and it is denoted by ¿¿ I  and a few remarks 
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One, initial ideal of an ideal is a monomial ideal because it is generated by the initial terms.

And two, because it is a monomial ideal it is also finitely generated this is what we proved in

the previous lecture. So, this is a financially generated ideal. And now let us look at let us

compute this in Macaulay and we will see some small surprise.
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So, here we ask so the command for the computing initial ideal is also lead term. So, if you

give lead term it will check its argument and decide what is to be computed. So, we ask lead

term of ideal generated by f 1, f 2 and f 3 recall f 1, f 2 and f 3  are these and the lead terms are

X 2Y , XY , XZ .

So, if you look at the ideal generated by them and ask for its initial ideal; then suddenly we

see that there are more than three things here because there was X 2Y , XY , XZ, but now we

see there is an XY  but there is no X 2Y  and then there is an XZ , but then there are three other

things which are new which we did not know. 

So, let us try to understand what happened. There are two issues to be understood one; X 2Y

is not in this list and then in addition there are three other things. Let us understand these

things one at a time X 2Y  is not there because XY  is there and X 2Y  is a multiple of XY . So,

any ideal which requires X 2Y  is already taken care of by at this XY . So, that explains why

X 2Y  is not there in this list. 

So, now let us try to understand some of these thing I mean we will not explain all three of

them, but its a same reasoning. So, let us try to do this computation. 
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So, if we took f 1−X f 2. So, this is because how did we make this decision the leading term of

f 1 was X 2Y  and leading term of f 2 was XY ; so I multiply by X. So, that the leading and then

take the difference; so that the leading terms cancel each other that is what we did  So, we get



some polynomial whose leading term is X Y 2 which is divisible by the leading term of f 2 and

if you so which you need to multiply by Y . 

So, we take this; so the word “oo” refers to just the previous output oo−Y f 2 will now cancel

this term also and we have some we get some new expression. 
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Now this one leading term is XZ  and we know that the in the last polynomial f 3 there was a

−XZ; so we add these two together and we get 2Y 2+YZ . Now the leading term is Y 2, but you

know because Macaulay2 has to keep track of you know when you write programs we cannot

keep lose these we cannot lose these coefficients.

So, here in the algorithm that Macaulay was running it would give 4Y 2, but the point is the

same there is a polynomial in this ideal whose leading term is Y 2 which is not visible by just

looking at the generators itself. So, that is how this term  4Y 2 came and similarly one can

work more and see where the XZ ,Z3 came in and the YZ came in.

So, this is the this is a what is meant by initial ideal and what issues one has to worry about

computing going about computing them . So, with this we have now learned a way to convert

an arbitrary ideal to an initial ideal to a monomial ideal and now we want to use this idea to

prove Hilbert basis theorem. So, we call Hilbert basis theorem.
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So, for fields the point that we want to prove is k field R is a polynomial ring in finitely many

variables so that is then R is Noetherian. This is what we will now prove. 

So, let I be an ideal we may as per you assume that I is a nonzero ideal because if it is 0 its

always finitely generated. And we define J to be the initial ideal of I, ¿¿ I  mean where this is

any monomial order it does not matter for this proof what that is.
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So, J is finitely generated that was we know that all we have seen that all monomial ideals are

finitely generated as a consequence of Dicksonon’s lemma.



So, J is generated by initial terms. So, therefore, there exist  g1 ,…, gm inside I such that J is

generated by the initial term of g1 up to initial term of  gm.  For a generating set for J is the

initial terms and then there is a by Dickson’s lemma there is a finite set and so they are initial

terms of some elements from I, call those elements of I as g1 ,…, gm. 

And so we are claimed; so we wanted to show that J is generated by the initial terms of these

then I is generated by those elements themselves. This need not be a minimal generating set

which you will see some examples in the exercises, but it is generated by the same set whose

initial terms generate the initial ideal.

So, we will prove it some more informally the reason is I would like you to understand what

is going on in the argument rather than writing it out formally in some setup.
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So, let f ∈ I  is nonzero. If it is zero then it is already in the ideal generated by the g’s. So, we

call  that  I  contains  the  ideal  generated  by  the  g’s.  What  we want  to  show is  the  other

containment if f is 0 then its already here. So, we take a nonzero element we take an element

here that is nonzero then prove that it is there. 

Since f the initial term of f is inside J there exist a j1 such that the initial term of g j1 divides

the initial term of f . So, this is the property about monomial ideals which is that if you have a

monomial ideal and a monomial then a monomial of R is inside the ideal if and only if its

divisible by one of the generators.



So, again you can do this as an exercise I will write this up and so one uses this. So, this is

divisible by that.
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So, what does that mean? There exists a monomial  μ1∈R such that the initial term of f is

¿¿ f=μ1¿¿g j1. So, the quotient I mean when you divide you get another monomial.

So, now we are going to proceed by induction let us define f 1 to be f itself. So, we are going

to construct a sequence of polynomials. We define  f 2= f 1−μ1¿¿ g j1. So, let me just restate

what we did; we found j1 such that initial term of g j1divides initial term of f 1 and μ1 is the

quotient that you have to multiply to get them equality. So, we just subtracted that from f 1.

What is the property of this?

If  f 2 is not zero then we can talk about the initial term of f 2 this has to be less than the initial

term of f 1 because the initial term of I mean this was multiplied precisely to cancel the initial

term here. So, let me we vague here need to take care of coefficients. So, when we say initial

term we are saying we are taking it with the coefficient 1, but that may not work all the time.

So, maybe I should just put this here; use appropriate coefficient from from k here. 

It may not be just subtract it  may not be minus 1, but if you appropriately multiply by a

coefficient you can get this result you can cancel the initial term that is what one has to give



so we get this. So, if  f 2 is inside the ideal generated by the g’s will now imply that f which is

f 1 is also in the ideal generated by the g’s. 

So, its enough to prove that f 2 is inside the ideal generated by the g’s. So, if f otherwise just

continue. So, repeat the same procedure to f 2.
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We would get an f 3 which is some f 2−μ2¿¿ g j2 this values do not really matter or that matter

is such that. So, again one has to find appropriate coefficient here not just minus 1 the same

discussion that we have to if f 3 is non zero then in f 3 is this is initial with respect to there is

only one ordered question is strictly less than in f 2.  

So, this way we can get f 1 like this such that;  So, assuming that this continues forever we

would get f i+1 such that ¿¿ f i+1<¿¿ f i. Remember this question about initial ideal comes in only

if the new polynomial that we just constructed is nonzero. 

So, remember this is a descending sequence of monomials, ¿¿ f 1 is the largest then is ¿¿ f 2 then

is ¿¿ f 3 and so on. So, this construction can stop as soon as we hit an f i which is inside g’s.
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So, note that this the construction of the sequence f j can stop as soon as there exists some i

such that  f i is inside the ideal generated by the  g’s, because then as we explain how to go

from f 2 to f 1. We can go backwards and prove that f  is inside I  the f is in generated by these

things. So, let us continue like this.

So, we want to show that there exists some i such that f i if you keep constructing like this we

would end up with an i such that this is inside ideal generated by g1 through gm. So, this is

what  we want  to  prove.  So,  if  this  does  not  happen then  f i is  nonzero.  So,  by  way of

contradiction assume this does not happen.

So, this is the assumption that; each time one constructs this thing one gets a polynomial

which is not inside ideal generated by the g’s. Let us understand that. 
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So, then first of all the f i’s have to be nonzero because any zero polynomial is already in the

ideal  generated  by  the  g’s.  So,  f i is  a  non  zero  and  we  get  a  descending  sequence  of

monomials with respect to the given order like this; descending in the sense that with respect

to the given monomial order this is strictly descending.

So, then what we want to prove is the following. So, claim there does not exist any infinite

descending change of monomials. Again descending change means with respect to the given

monomial order 
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So, how do we prove this? So, let Λ be some monomials Λ={ν1 , ν2 ,…} such that ν1>ν2>… .

Now, by Dickson’s lemma this has the finite set of minimal elements. So, let us call them i1

through  ir,  that  is  there  exists  i1<i2<…< ir such that  {ν i1 , ν i2 ,…, ν ir } is  the set  of  minimal

elements of Λ by divisibility. 

So, in this sentence we are using order and divisibility simultaneously minimal here means

with by divisibility. So, what does that mean?
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Therefore for all i> ir, ν i is divisible by ν ik for some k ∈ {1,2 ,…, r}. That is ν i1 , ν i2 ,…, ν ir one

of these things is going to divide that. 

Now, this is a monomial that divides that.  So, note that ν ik<ν i, this is by hypothesis and this

divides that. So, let μ=
ν i
ν ik

. So, this is a monomial. So, this is with respect to the given order

and μ is a monomial.
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Therefore μ is bigger than 1 this is the definition of a monomial order. Now, let us look at put

these two together  μ is bigger than 1. Now if you multiply both sides by ν ik, then μ. ν ik=ν i

which going to be bigger than ν ik.

But hypothesis was the opposite that  ν ik is bigger than  νi, this is a contradiction. And what

where did we get this contradiction? We got this contradiction by assuming for every i, f i is

not inside g’s; so this was the assumption. 

This assumption and when we proceeded with this assumption we got an infinite descending

chain  of  monomials  and  then  we  put  that  is  not  possible.  So,  the  contradiction  is  the

assumption. Therefore, there exist i such that f i is inside g1 through gm. And then we saw that

this implies that f i−1 is inside g1 through gm and proceeding like this f  which is f 1 is inside g1

through gm and this implies that I  is the ideal generated by g’s.  

So, this is the proof of Hilbert basis theorem that we do using this idea of monomial ideal,

monomial orders, initial ideal etc. So, this is the end of this lecture. 
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